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Stability of closedness of convex cones under linear mappings II

Jonathan M. Borwein1, Warren B. Moors2

ABSTRACT: In this paper we revisit the question of when the continuous linear image of a
fixed closed convex cone K is closed. Specifically, we improve the main result of [3] by showing
that for all, except for at most a σ-porous set, of the linear mappings T from Rn into Rm, not
only is T(K) closed, but there is also a neighbourhood around T whose members also preserve
the closedness of K.
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1. Introduction

In [3] we investigated when then continuous linear image of a closed convex cone in Rn is
closed. This was motivated in part by the abstract versions of the Farkas lemma and the Krein-
Rutman theorem as given in [2]. The closure of such conical images is central to duality theory
in both semi-definite and conical linear programming [2, 3, 9, 10]. Recall that a nonempty
set K of a vector space V is a convex cone if K is convex and for each λ ∈ [0, ∞) and x ∈ K,
λx ∈ K. Although there are simple examples to show that the continuous linear image of a
given closed convex cone K in Rn need not be closed (see [3, Example 1]), it was shown in [3]
that in some sense, for almost all T ∈ L(X, Y) —the space of all linear mappings acting between
finite dimensional normed linear spaces X and Y, endowed with the operator norm—T(K) is
indeed closed in Y.

Specifically, in [3] we showed that for a given closed convex cone K in Rn, int{T ∈ L(Rn, Rm) :
T(K) is closed} is dense in L(Rn, Rm). We also showed that in general

{T ∈ L(Rn, Rm) : T(K) is closed}
is not an open set. However, we did not address the question of the size of the set

L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(K) is closed}
in terms of measure which, as shown in [7], can be quite distinct from being small in terms of
category.

In this paper we remedy this situation by showing that

L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(K) is closed}
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is σ-porous, a notion which is simultaneously small with regard to both measure and category.
We were sure this was so at the time of writing [3] but the details are somewhat subtle. Along
the way we shall show in Corollary 2.3 that{

T ∈ L(Rn, Rm) : rank(T) < min{m, n}
}

is σ-porous; a fact that is of independent interest since mappings with gradients of maximal
rank admit inverse function theorems [5] and can be used to guarantee metric regularity [1].

2. Preliminaries

We start with some notation. For any x in a normed linear space (X, ‖ · ‖) and r ≥ 0 we shall
denote by, B(x; r) the set {y ∈ X : ‖y− x‖ < r} and for any M ⊆ Rn, x ∈ Rn and R > 0 we
define γ(x, R, M) to be the supremum over all r ≥ 0 for which there exists z ∈ Rn such that
B(z, r) ⊆ B(x, R) \ M. Then we define the porosity of M at x as

p(M, x) := lim inf
R→0+

γ(x, R, M)
R

.

Further, we shall say that a set M is porous at x if p(M, x) > 0 and, moreover, if M is porous
at each x ∈ M then we shall say that M is porous. Finally, we shall say that M is σ-porous if it
is a union of countably many porous sets. Porosity is a very natural geometric notion as the
unfamiliar reader may discover by drawing some pictures in the plane.

It is easy to see that σ-porous sets enjoy some permanence properties. For example, if ‖ · ‖
and ||| · ||| are equivalent norms on a vector space X then a subset M is σ-porous in (X, ‖ · ‖) if,
and only if, it is σ-porous in (X, ||| · |||). In fact, an even stronger property is true.

Proposition 2.1. Suppose If (X, ‖ · ‖) and (Y, ||| · |||) are normed linear spaces are normed spaces and
T : X → Y is a continuous, open linear mapping. Then T−1(M) is σ-porous in (X, ‖ · ‖) whenever
M ⊆ Y is σ-porous in (Y, ||| · |||) , .

Since the notion of σ-porosity in finite dimensional normed linear spaces is insensitive to
the particular choice of norm we shall henceforth (unless otherwise stated) assume that Rn

is equipped with the Euclidean norm and that the space L(X, Y) is equipped with the corre-
sponding operator norm.

Our interest in σ-porosity stems from the fact that σ-porous sets are small in both a measure
theoretic sense and in a Baire categorical sense, [11]. More precisely, a Lebesgue measurable
set M in Rn that is σ-porous has Lebesgue measure zero and is at the same time a first category
set (i.e., a countable union of nowhere dense sets). For further information—old and new—on
Baire category the reader could consult [7] and [4].

In order to present our first theorem we need to introduce some matrix notation. For a m× n
matrix A we shall denote by, [A]ij the (ij)th entry of the matrix A i.e., the entry in the ith row
and jth column of the matrix A and by, Aij the sub-matrix of A obtained by deleting the ith row
and jth column of A. Finally, we shall denote by M(m,n) the set of all m× n matrices (over R).

Theorem 2.2. For each n ∈ N, the set

{A ∈ M(n,n) : rank(A) = n− 1}

is porous in M(n,n) with respect to any norm on M(n,n).

Proof: Let ‖ · ‖ be any norm on M(n,n), M := {A ∈ M(n,n) : rank(A) = n− 1} and let B ∈ M. It
will be sufficient, due to [11, page 517], to show that there is a neighbourhood U of B, subspaces
H and F of M(n,n) such that (i) Dim(F) = 1; (ii) H ⊕ F = M(n,n) and (iii) a Lipschitz function
f : W → F defined on a nonempty open subset W of H such that U ∩ M = {x + f (x) : x ∈ W}.



3 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-153 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-153 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-15

Let 1 ≤ i, j ≤ n be chosen so that Det(Bij) 6= 0. Let H := {A ∈ M(n,n) : [A]ij = 0}. Then H is
a co-dimension 1 subspace M(n,n). Now define Eij ∈ M(n,n) by,

[Eij]i′ j′ :=
{

1 if (i, j) = (i′, j′)
0 if (i, j) 6= (i′, j′)

and let F := span{Eij}. Finally, let Pij : M(n,n) → H be defined by, Pij(A) := A− [A]ijEij. Next,
let W be any neighbourhood of Pij(B), with respect to the relative topology on H, such that
Det(Aij) 6= 0 for all A ∈ W and let U := (Pij)−1(W). Note that for each A ∈ U, rank(A) ≥
n− 1. If, on the other hand, A ∈ U and Det(A) = 0 (i.e., if rank(A) = n− 1) then

n

∑
k=1

(−1)i+k[A]ikDet(Aik) = 0

and so

[A]ij =
1

Det(Aij)

n

∑
k=1
k 6=j

(−1)k+1−j[A]ikDet(Aik).

Then we define f : W → F by,

f (A) :=

 1
Det(Aij)

n

∑
k=1
k 6=j

(−1)k+1−j[A]ikDet(Aik)

Eij

and g : W → M by, g(A) := A + f (A). Since f is C1 on W, by possibly making W smaller,
we can assume that f is Lipschitz on W with respect to ‖ · ‖. It is now routine to verify that
M ∩U = {g(A) : A ∈ W} since if A ∈ M ∩U then Pij(A) ∈ W and g(Pij(A)) = A. 2

In the following corollary we will repeatedly use the fact that if A′ is a sub-matrix of a matrix
A, obtained by deleting some rows and/or columns of A, then rank(A′) ≤ rank(A).

We may now prove the result alluded to in the introduction:

Corollary 2.3 (Maximal Rank). For each (m, n) ∈ N2, the set{
A ∈ M(m,n) : rank(A) < min{m, n}

}
is σ-porous in M(m,n) with respect to any norm on M(m,n).

Proof: Firstly, we may assume that m, n ≥ 2. To show that {A ∈ M(m,n) : rank(A) <
min{m, n}} is σ-porous in M(m,n) it is sufficient to show that for each 1 ≤ k < min{m, n},
{A ∈ M(m,n) : rank(A) = k} is σ-porous. Fix 1 ≤ k < min{m, n} and let Σk denote the
set of all strictly increasing functions from {1, 2, . . . , k + 1} into {1, 2, . . . , m} and let Σ∗k de-
note the set of all strictly increasing functions from {1, 2, . . . , k + 1} into {1, 2, . . . , n}. For each
(π, π∗) ∈ Σk × Σ∗k and A ∈ M(m,n) let, A(π,π∗) ∈ M(k+1,k+1) be the sub-matrix of A defined by,
[A(π,π∗)]ij := [A]π(i)π∗(j) for each 1 ≤ i, j ≤ k + 1. Furthermore, let Nk := {A ∈ M(k+1,k+1) :
rank(A) = k}.

From Theorem 1 we know that Nk is σ-porous in M(k+1,k+1). For each (π, π∗) ∈ Σk × Σ∗k let,

L(π,π∗)
k := {A ∈ M(m,n) : A(π,π∗) ∈ Nk} = {A ∈ M(m,n) : rank(A(π,π∗)) = k}.

Since L(π,π∗)
k is the inverse image of Nk under the linear surjection A 7→ A(π,π∗), L(π,π∗)

k is
σ-porous in M(m,n). Now, from linear algebra we can deduce that

{A ∈ M(m,n) : rank(A) = k} ⊆
⋃
{L(π,π∗)

k : (π, π∗) ∈ Σk × Σ∗k}
as required. 2

In order to expedite the proof of our main theorem we shall take this opportunity to record
the following prerequisite result. To avoid confusion between scalars and vectors we shall, in
the next lemma, denote vectors in bold; and the unit sphere in Rn by SRn .
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Lemma 2.4. For any a := (a1, a2, . . . , am) ∈ Rm and any x := (x1, x2, . . . , xn) ∈ SRn , there exists
an operator T ∈ L(Rn, Rm) such that T(x) = a and ‖T‖ = ‖a‖.

Proof: Define T : Rn → Rm by,

T(y) := (a1x · y, a2x · y, . . . , amx · y).

Then for any y ∈ Rn such that ‖y‖ ≤ 1,

‖T(y)‖ = ‖(a1x · y, a2x · y, . . . , amx · y)‖
≤ ‖(|a1|, |a2|, . . . , |am|)‖ since |x · y| ≤ 1
= ‖a‖.

Therefore ‖T‖ ≤ ‖a‖. On the other hand,

‖T‖ ≥ ‖T(x)‖ = ‖(a1x · x, a2x · x, . . . , amx · x)‖ = ‖a‖. 2

There are various known sufficient conditions concerning when the continuous linear image
of a closed convex cone K is closed. The best known is the classical result that it suffices that
K be polyhedral [2]. The following is effectively a specialization of a recession direction [2]
condition:

Proposition 2.5. [3, Proposition 3] Let T ∈ L(Rn, Rm) and let K be a closed cone (not necessarily
convex) in Rn. If

K ∩ ker(T) = {0}
then there exists a neighbourhoodN of T in L(Rn, Rm) such that S(K) is closed in Rm for each S ∈ N .

For a subset D of a vector space V, the core of D, denoted, cor(D), is the set of all points
d ∈ D where for each x ∈ V \ {d} there exists an 0 < r < 1 such that λx + (1− λ)d ∈ D for all
0 ≤ λ < r. Clearly if the affine span aff(D) 6= V then cor(D) = ∅. In this case the following
concept is useful.

Given a subset C of a vector space V, the intrinsic core of C, denoted icor(A), is the set of all
points c ∈ C where for each x ∈ aff(C) there exists an 0 < r < 1 such that λx + (1− λ)c ∈ C
for all 0 ≤ λ < r.

One of the most important properties of the intrinsic core is that if C is a convex subset
of a finite dimensional vector space V then icor(C) 6= ∅, [6, page 7]. In fact, if V is a finite
dimensional topological vector space then icor(C) is dense in C for each convex subset C of
the space V. Another important property of the core is that for a convex subset C of a finite
dimensional topological vector space, cor(C) = int(C), [2, Theorem 4.1.4].

The reason for our interest in the intrinsic core is that it provides the other sufficient condi-
tion that we shall need to apply:

Proposition 2.6 (Intrinsic core). [3, Proposition 5] Let Y be a normed linear space, T : Rn → Y be
a linear transformation and let K be a closed cone in Rn. If

ker(T) ∩ icor(K) 6= ∅

then T(K) is a finite dimensional linear subspace of Y and hence a closed convex cone.

Corollary 2.7. [3, Corollary 2] The only way T(K) can fail to be closed is if

ker(T) ∩ K ⊆ K \ icor(K)

and that at the same time ker(T) ∩ K is not a linear subspace. In particular, ker(T) ∩ K 6= {0}.



5 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-155 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-155 J. M. Borwein, W. B. Moors / Journal of Nonlinear Analysis and Optimization 1 (2010) 8-15

3. Main Results

We require one more lemma:

Lemma 3.1. Let Y be an n-dimensional normed linear space and let K be a closed convex cone in
Y. Then L(Y, Rm) \ int{T ∈ L(Y, Rm) : T(K) is closed} is σ-porous in L(Y, Rm) if, and only if,
L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(ϕ(K)) is closed} is σ-porous in L(Rn, Rm) where ϕ : Y → Rn

is any linear bijection from Y onto Rn.

Proof: Let ϕ : Y → Rn be a linear bijection from Y onto Rn and let ϕ# : L(Rn, Rm) → L(Y, Rm)
be defined by, ϕ#(T) := T ◦ ϕ. Then ϕ# is an isomorphism from L(Rn, Rm) onto L(Y, Rm) and

{T ∈ L(Y, Rm) : T(K) is closed} = ϕ#({T ∈ L(Rn, Rm) : T(ϕ(K)) is closed}). 2

The next result shows—as promised—that although it is not true that, if T(K) is closed for
some closed convex cone K then S(K) is closed for all S in some neighbourhood of T, it is
“almost” true, in the sense that for “almost all” T ∈ L(Rn, Rm) if T(K) is closed then there exists a
neighbourhood W of T such that S(K) is closed for all S ∈ W . More precisely:

Theorem 3.2. Suppose that K is a closed convex cone in Rn then

L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(K) is closed}

is a σ-porous set in L(Rn, Rm).

Proof: Let Y := K − K. We shall consider first the case when Y = Rn. Let M be the family of
all linear mappings T ∈ L(Rn, Rm) with maximal rank (i.e., rank(T) = min{m, n}).

It is easy to verify that M is an open subset of L(Rn, Rm). Let ϕ : M(m,n) → L(Rn, Rm) be
defined by, ϕ(A)(x) := Ax. Then ϕ is an isomorphism from M(m,n) onto L(Rn, Rm). Moreover,
ϕ−1(M) = {A ∈ M(m,n) : A has maximal rank}. Therefore, from Corollary 1, L(Rn, Rm) \M
is σ-porous in L(Rn, Rm). Hence to show that L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(K) is closed}
is σ-porous in L(Rn, Rm) it is sufficient to show that M\ int{T ∈ L(Rn, Rm) : T(K) is closed}
is σ-porous in L(Rn, Rm); which is what we shall do. There are two cases:

(i) If n ≤ m then each member of M is one-to-one and so ker(T) ∩ K = {0} for each T ∈ M
and thus we are done by Proposition 2.

(ii) Hence we shall assume that m < n. We now define P : M → L(Rn, Rn) by, P(S) :=
I − S∗(SS∗)−1S, where I is the identity mapping on Rn and S∗ is the conjugate of S, i.e., S∗ ∈
L(Rm, Rn) and S∗(y) · x = y · S(x) for all y ∈ Rm and all x ∈ Rn. It is routine to check that:

(i) for each S ∈ M, P(S) is well-defined, i.e., (SS∗)−1 exists;
(ii) P is C1 on M and hence locally Lipschitz on M;

(iii) for each S ∈ M, P(S) is the projection of Rn onto ker(S).
For each n ∈ N, let

Ln := {S ∈ M : there exists an open neighbourhood N of S such that P|N is n-Lipschitz}

Now each Ln is an open subset of M and M =
⋃∞

n=1 Ln. So to show that

M\ int{T ∈ L(Rn, Rm) : T(K) is closed}

is σ-porous it is sufficient to show that for each n ∈ N,

En := Ln \ int{T ∈ L(Rn, Rm) : T(K) is closed}

is porous.
To this end, let us fix n ∈ N and consider T ∈ En. Since

T 6∈ int{T ∈ L(Rn, Rm) : T(K) is closed},

it follows that
{0} 6= ker(T) ∩ K ⊆ K \ icor(K).
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Choose x ∈ ker(T) ∩ K such that ‖x‖ = 1. Note that this is possible since ker(T) ∩ K is a
nontrivial cone. Now select y ∈ int(K) = cor(K) = icor(K) 6= ∅ such that ‖y‖ = 1. Also
choose 0 < r < 1 such that B(y; r) ⊆ int(K). We claim that

p(En, T) ≥ α := r/(8n[‖T‖+ 1]) > 0.

Let 0 < R0 < 1 be chosen so that P is n-Lipschitz on B(T; R0) and for each 0 < R < R0 let,
λR := R/(8[‖T‖+ 1]) and zR := λRy + (1− λR)x. Now for each 0 < λ < 1,

B(x + λ(y− x); λr) = λB(y, r) + (1− λ)x ⊆ K

since K is convex and so B(x + λ(y− x); λr) ⊆ int(K). In particular, B(zR; λRr) ⊆ int(K). Now,

‖T(zR)‖ = ‖T(x + λR(y− x)‖ = λR‖T(y− x)‖ ≤ λR‖T‖‖y− x‖ ≤ 2λR‖T‖ < R/4

and 1 ≥ ‖zR‖ = ‖x + λR(y − x)‖ ≥ ‖x‖ − λR‖y − x‖ ≥ 1 − 2λR > 1 − 2(1/8) = 3/4. By
Lemma 1 there exists a S′R ∈ L(Rn, Rm) such that S′R(zR) = T(zR) and ‖S′R‖ < R/3. Let
SR := T− S′R. Then ‖T− SR‖ < R/3, B(SR; αR) ⊆ B(T; R) (since α ≤ 1/8) and SR(zR) = 0. To
complete the proof in this case we argue below that this holds for all 0 < R < R0, p(En, T) ≥
α > 0.

Claim: For each 0 < R < R0, B(SR; αR) ⊆ int{S ∈ L(Rn, Rm) : S(K) is closed}.

Proof of Claim: To see this, suppose that S′′ ∈ B(SR; αR), that is

‖SR − S′′‖ < rR/(8n[‖T‖+ 1]).

To show that
S′′ ∈ int{S ∈ L(Rn, Rm) : S(K) is closed}

it is sufficient to show that ker(S′′) ∩ int(K) 6= ∅. In fact, since P(S′′)(zR) ∈ ker(S′′) it is
enough to show that P(S′′)(zR) ∈ int(K). Now

‖P(S′′)(zR)− zR‖ = ‖P(S′′)(zR)− P(SR)(zR)‖ since zR ∈ ker(SR)
≤ ‖P(S′′)− P(SR)‖‖zR‖
≤ ‖P(S′′)− P(SR)‖ since ‖zR‖ ≤ 1
≤ n‖S′′ − SR‖ since P is n-Lipschitz on B(SR, αR)

<
nrR

8n(‖t‖+ 1)
=

rR
8(‖T‖+ 1)

= λRr.

Therefore, P(S′′)(zR) ∈ B(zR; λRr) ⊆ int(K). Thus,

S′′ ∈ int{S ∈ L(Rn, Rm) : S(K) is closed};

which concludes the proof of the claim. 2

In the case when Y is a proper subspace of Rn, it follows from Lemma 2 and the previous
case that L(Y, Rm) \ int{T ∈ L(Y, Rm) : T(K) is closed} is σ-porous in L(Y, Rm). To finish the
proof we consider the linear surjection R : L(Rn, Rm) → L(Y, Rm) defined by, R(T) := T|Y.
Then by setting E := L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T(K) is closed} we have that:

E = L(Rn, Rm) \ int{T ∈ L(Rn, Rm) : T|Y(K) is closed}
= R−1(L(Y, Rm)) \ int[R−1({S ∈ L(Y, Rm) : S(K) is closed})]
= R−1(L(Y, Rm)) \ R−1(int{S ∈ L(Y, Rm) : S(K) is closed}) (∗)
= R−1(L(Y, Rm) \ int{S ∈ L(Y, Rm) : S(K) is closed}).

The equality in line (∗) follows from the general fact that for any continuous and open map-
ping R : X → Y acting between topological spaces and any set A ⊆ Y, R−1(int(A)) =
int(R−1(A)). The proof is now completed by appealing to Proposition 1. 2

Further results on the images of closed convex cones under linear mappings may be found
in [8, 9].
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[11] L. Zajı́ček, “On σ-porous sets in abstract spaces,” Abstract Applied Anal. 2005 (2005), 509–534.

1CENTRE FOR COMPUTER ASSISTED MATHEMATICS AND ITS APPLICATIONS (CARMA), UNIVERSITY OF NEW-
CASTLE, CALLAGHAN, NSW 2308, AUSTRALIA.
Email address: jborwein@newcastle.edu.au

2 DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF AUCKLAND, PRIVATE BAG 92019, AUCKLAND, NEW
ZEALAND.
Email address: moors@math.auckland.ac.nz


