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Abstract. A salt crystal is made up of alternate positive and negative electric charges
based on a simple cubic lattice. The electrostatic energy of interaction of this array of
charges was first calculated approximately by Madelung in 1918 [1]. Essentially it required
the evaluation of the very slowly conditionally convergent triple sum

α =
∑′ (−1)(m+n+p)

(m2 + n2 + p2)1/2
.

This was the prototype for the evaluation of arrays of electric charges arranged on other
crystal structures, all referred to as Madelung constants. However, any reference to the
Madelung constant always implies the first example, α. No closed form for α has ever been
found but Richard Crandall initiated novel attempts to provide better approximations to
α with well-known constants of analysis and these are reviewed here.

Mathematician-physicist-inventor Richard Crandall

It is with great sadness that the present authors announce the passing of their dear
colleague Richard Crandall, who died Thursday December 20, 2012, after a brief bout
with acute leukaemia—the week before his 65th birthday on December 29.

Crandall had a long and colorful career. He was a physicist by training, studying with
Richard Feynman as an undergrad at the California Institute of Technology, and receiv-
ing his Ph.D. in physics at MIT, under the tutelage of Victor Weisskopf, the Austrian-
American physicist who discovered what is now known as the Lamb Shift and who was
one of the most influential post-war physicists. Richard often commented that he thought
digitally in the fashion of an electrical engineer.

Crandall was for many years at Reed College in Portland, Oregon, where he directed
the Center for Advanced Computation. At the same time, he also worked for Next
Computers (as Chief Scientist), and subsequently for Apple Computers (as Distinguished
Scientist), where he was the head of Apple’s Advanced Computation Group.

Crandall’s research spanned both the theoretical and practical realms: prime num-
bers, cryptography, data compression, signal processing, fractals, epidemiology, and, of
considerable interest to the present authors, experimental mathematics. He held several
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patents. He produced many algorithms that are incorporated into Apple’s products, in-
cluding the iPod and the iPhone. The library of fast Fourier transforms that was produced
by his Advanced Computation Group at Apple was described by a colleague of ours as
“miraculously” fast. He worked on image processing techniques for Pixar for 13 years, the
last two to remove artifacts that reportedly could only be seen on Steve Jobs’ personal
projector or to meet Jobs’ exacting personal requirements that raindrops should look like
they did on celluloid (Richards tool was too natural for modern film goers).

Indeed, Crandall was a close colleague of Steve Jobs for many years. Crandall was
preparing to write a biography of Jobs, which biography sadly will now not be written.

How we did not meet

Unfortunately I, John Zucker, never had the pleasure of meeting Richard in person. We
established e-mail connection over our joint interest in the Madelung constant. It hap-
pened this way. In 1987 Richard produced two papers on α both of which I was asked to
referee. They were of course both very good and were accepted. However, in one paper
I communicated (as a referee anonymously) a proof of a conjecture he had made, and in
the other, the result of a sum he had not known. From this he guessed very quickly who
the anonymous reviewer was and we got into contact.

Ever since α first appeared it has been subjected to much analysis such as (a) finding
ways to evaluate it rapidly, or (b) to see whether it might be expressed in terms of other
constants of analysis. It was clear from his paper with Delord [2] that the problem of
evaluating α to many decimal places was easily solved by Richard as he gave a value to
some 50dp. It is given here to 24dp for future reference.

α = −1.747 564 594 633 182 190 636 212 . . . (1.1)

Let me point out immediately that for all practical purposes such as evaluating the lattice
energy of salt the first four figures would be enough to compare with any experimental
value. But just as one only requires π to only 35 digits to find the radius of the universe
to the accuracy of the radius of a hydrogen atom, this doesn’t stop mathematicians
calculating it to 10 trillion digits. So in the paper with Buhler [3], (b) was tackled.

Richard and Madelung

Richard’s conception was to find an exact expression for α made up of a part which
could be evaluated in terms of well-known constants of analysis plus an exponentially fast
converging residual sum.

Two of these sums which arise here are

S+

(
m,n, p;

πr

t

)
:= S+

(πr
t

)
:=
∑ 1

r

(−1)m+n+p

exp πr
t

+ 1
,

S−
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t
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(πr
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Here r :=
√
m2 + n2 + p2 and wherever

∑
appears it will denote summation over all

indices from −∞ to ∞. Note that

S+

(πr
t

)
+ S−

(πr
t

)
= −2S−

(
2πr

t

)
. (1.2)

Richard found the following exact expression for α.

αC(t) = 4tC(t)− π

2t
+ 2S+

(πr
t

)
. (1.3)

where

C(t) :=
t

π

∑′ (−1)m

m2 + 4t2(n2 + p2 + q2)
=

1

2π

∑′ (−1)m+n+p

m2 + n2 + p2 + 4t2(q + 1/2)2
,

∑′ implies summation over all indices from -∞ to ∞ excluding the case when all the
indices are simultaneously zero.

The residual term 2S+

(
πr
t

)
contributes very little to the value of α and the smaller t

is the less it contributes. So if C(t) could be evaluated it would provide an approximation
to α. Now C(t) involves finding a four-dimensional sum. Now lattice sums are often
evaluated using properties of theta functions and because there are many more θ-function
identities available in four than in three dimensions, they are more often easily evalu-
ated than three dimensional sums. This indeed proved to be the case and the following
evaluations were provided in [3]:

C(1) = −1

8
+

3 log 2

4π
, C

(
1

2

)
=

1√
2
, C

(
1

4

)
=

√
2
√

2− 2

π
β

(
1

8

)
,

where β(x) is the central beta function defined by

β(p) := B(p, p) =
Γ2(p)

Γ(2p)
.

So for t = 1/4

αC(1/4) = C(1/4)− 2π + 2S+3

(
1

4

)
=

√
2
√

2− 2

π
β

(
1

8

)
− 2π + 2S+3

(
1

4

)
, (1.4)

and we have √
2
√

2− 2

π
β

(
1

8

)
− 2π = −1.747523,

with the residual series 2S+(4πr). Comparing this with (1.1) gives agreement to 4dp,
good enough for any practical application. A full account of Richard’s struggle with α is
given in his masterly presentation in [4].
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Tyagi’s work

This probably inspired another investigator, Sandeep Tyagi, to another attack on α. In
this work he naturally came into contact with Richard who communicated his work to
myself. It encouraged me to find a value for C(t) with t < 1/4, namely

C

(
1√
24

)
=

√
3
√

2− 6
√

3 + 6
√

6

2π
β

(
1

8

)
.

So using this in (1.3) one has√
3
√

2− 6
√

3 + 6
√

6

2π
β

(
1

8

)
−
√

6

π
= −1.7475621

with residual 2S+(
√

24πr). This gives agreement to 5dp with(1.1). However, this is trivial
compared with what Sandeep had achieved in [5]. Sandeep found another exact expression
for α similar in structure to (1.3) but different. It was

αT (t) = T (t)− π

6t
− S−

(πr
t

)
. (1.5)

where

T (t) :=
2t

π

∑ (−1)(m+n+p)

m2 + n2 + p2 + 4t2q2

Sandeep was able to evaluate T (t) for some values of t thus

T

(
1

2

)
= −1

2
− log 2

π
, T

(
1

4

)
= −1

4
− log 2

2π
+

1√
2

Thus for t = 1/4

αT (1/4) = −1

4
− log 2

2π
+

1√
2
− 2π

3
− 2S−(4πr), (1.6)

Very shrewdly he then took the average of (1.4) and (1.6) to obtain

αCT = −1

8
+

1

2
√

2
− 4π

3
− log 2

4π
+

√
2
√

2− 2

2π
β

(
1

8

)
− 2S−(8πr). (1.7)

It is seen that the residual sum is even smaller.
(This result might have been found directly from a relation discovered later between

C(t) and T (t). This is

4tC(t) + T (t) = 2T (t/2), hence 2T (1/8) = T (1/4) + C(1/4)

which gives (1.7) immediately.)
When we evaluate the constants in (1.7) we obtain -1.747 564 594 7 in which the error

in α is just 1 in the tenth decimal place. A remarkable agreement!
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Further refinement

As a kind of tribute to Richard I suggested to Sandeep we might try to improve on this.
One way of doing this would be to find C(1/8) but we were not able to do this. However,
we could look at evaluating certain terms of 2S−(8πr). Thus Sandeep considered finding
this when m=n=0,n=p=0 and p=m=0. We then get three contributions all the same and
finish with

2S−(1, 0, 0; 8πr) = −12
∞∑
p=1

(−1)p

p(e8πp − 1)
. (1.8)

Now using the result in [6]

∞∑
p=1

(−1)p

p(e2πpc − 1)
= −πc

12
− 1

12
log

4

kk′
(1.9)

where k and k′ are the values of the modulus and complimentary modulus of the complete
elliptic integrals K and K ′ of the first kind which are found when K ′/K = c. Here c = 4
and (1.8) can be evaluated to give

2S−(1, 0, 0; 8πr) = 4π +
9

2
log(
√

2− 1)− 6 log(21/4 + 1)− 45

8
log 2. (1.10)

When this is added to the constants of (1.7) we obtain -1.747 564 594 633 175 which
agrees with α given by (1.1) to 1 in the fourteenth decimal place.

Thus encouraged, the next set in 2S−(8πr) was evaluated. There are three terms of
the form (m = 0, n = p), (n = 0,m = p) and (p = 0,m = n) leading to

2S−(1, 1, 0; 8
√

2πr) = − 24√
2

∞∑
p=1

1

p(e8
√
2πp + 1)

. (1.11)

To evaluate this we require a result in [6]:

∞∑
p=1

1

p(e2πpc + 1)
= −πc

12
− 1

6
log

2K3kk′

π3
, (1.12)

with c = 4
√

2 in (1.11). The evaluation of (1.11) is somewhat involved but the result is

2S−(1, 1, 0; 8
√

2πr) = 8π + 2
√

2 log
4(1− b)2

√
2b(1 + b2)

(1 + b)4
+ 6
√

2 log
2

3
4 (1 + b)2β

(
1
8

)
64π

,

(1.13)

where b := (2
√

2− 2)
1
4 . Adding this contribution to (1.7) and (1.10) gives -1.747 564 594

633 182 191 7 and the disagreement with α occurs only in the eighteenth decimal place.
Finally let us add the contribution of 2S−(8πr) when m = n = p. In this case

2S−(1, 1, 1; 8
√

3πr) = − 16√
3

∞∑
p=1

(−1)p

p(e8
√
3πp − 1)

. (1.14)
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and here c = 4
√

3 and 2S−(1, 1, 1) may be evaluated to give

2S−(1, 1, 1; 8
√

3πr) =
16

3
π +

4

9

√
3 log

(1− d)4

32(1 + d)2
√

2d(1 + d2)
. (1.15)

where d :=
√

(
√

3 + 1)/
√

8. When this is added to the constants of (1,7), (1.10) and

(1.13) we obtain -1.747 564 594 633 182 190 636 22 where the agreement with α is now
up to 22 decimal places. It is clear how further terms may be evaluated.

Conclusion

The Madelung constant was only a tiny part of Richard’s many faceted interests. Far
more important was his contribution to computational number theory amongst many
other accomplishments. The brute force approach used here of evaluating terms of the
residue sums to add more constants of analysis to the value of α would, I am sure, not
have won the approval of Richard. He would have preferred a more subtle approach on
the lines of Sandeep’s derivation of (1.7). Still I think he would have been amused by the
results given here.

Acknowledgements. The author wishes to thank Sandeep Tyagi for his help and en-
couragement.
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