
In this discussion, Professor Jonathan Borwein of the University of 
Newcastle, Australia explains how modern computer technology has 
greatly broadened the ability to discover new mathematical results

To start, what is your research speciality? 

I am a bit of a jack of all trades: I have a 1974 
Oxford DPhil in optimisation theory and have 
held professorships as a pure mathematician, 
an applied mathematician, an operations 
researcher and a computer scientist. My current 
research interests span pure (analysis), applied 
(optimisation), computational (numerical and 
computational analysis) mathematics, and high 
performance computing.

I have authored well over a dozen books, including 
a 2010 publication on convex functions, which 
was a Choice 2011 Outstanding Academic Book, 
and over 350 refereed articles. My most recent 
co-authored book, Lattice Sums Then and Now, 
sits on the boundary between mathematical 
physics and number theory.

Which area of mathematics did your grant 
proposal focus on? 

Over the past decade I have (co-)authored half 
a dozen books – both research monographs and 

textbooks – on experimental mathematics and 
related mathematical computation. The given 
grant proposal focused on this area and is entitled 
Computer Assisted Research Mathematics and its 
Applications (CARMA), which is also the name of 
the centre I direct at Newcastle University. You 
might say CARMA brought me to Australia!

How would you describe the field of 
experimental mathematics? 

Experimental applied mathematics comprises the 
use of modern computer technology as an active 
agent of research for the purposes of gaining 
insight and intuition, discovering new patterns 
and relationships, testing and conjectures, and 
confirming analytically derived results, much in 
the same spirit that laboratory experimentation 
is employed in the physical sciences. It is closely 
related to what is known as ‘experimental 
mathematics’ in pure mathematics, as has been 
described elsewhere, including by the late Herb 
Wilf in the Princeton Companion to Mathematics. 

Depending on the context, the role of rigorous 
proof in experimental applied mathematics may 
be much reduced or may be unchanged from that 
of its pure sister. There are many complex applied 
problems where there is little point to proving 
the validity of a minor component, rather than 
finding strong evidence for the appropriateness of 
the general method.

In what way does your study appeal to both 
applied and pure mathematics? How will it 
change the culture of mathematics?

Mathematics has traditionally been seen as a 
deductive science, as opposed to the inductive 
methods of the physical and biological 
sciences. My colleagues and I are breaking 
down this somewhat false barrier, which is 
being rendered obsolete by the power and 
versatility of modern computing hardware 

and mathematical software (Moore’s law 
and on). We do mathematics in a more 
laboratory-like mode.

The mathematical research community is facing 
a great challenge to re-evaluate the role of 
proof in light of the growing power of current 
computer systems, modern mathematical 
computing packages, and the growing capacity 
to data-mine on the Internet. Add to that 
the enormous complexity of many modern 
capstone results such as the Poincaré conjecture, 
Fermat’s last theorem, and the classification 
of finite simple groups. As the need and 
prospects for inductive mathematics blossom, 
the requirement to ensure the role of proof is 
properly founded remains undiminished both in 
research and teaching.

Similarly, what have you found with analysis 
into Giuga’s Conjecture? Could you explain 
some of your methodology?

Guiga’s is a 63-year-old conjecture about 
prime numbers that no one has any idea 
how to prove. By clever computation based 
on smart mathematics, we have shown that 
the conjecture can only fail for counting 
numbers with more than 20,000 digits – as my 
collaborator David Bailey says, ‘computo ego 
sum’. Such kinds of mathematical computations 
have a long history of uncovering hardware and 
software bugs that more standard scientific 
computational tests do not. A famous example 
is the so-called Pentium bug.

For that reason, some of my algorithms for Pi 
were run on every Cray Inc. supercomputer 
before it left the manufacturer, from around 
1986 until the company was sold. In 1986, Bailey 
had replicable hardware and software errors 
that Cray was unaware of during a then-record 
computation of 29 million decimal digits of Pi. 
The record is now 10 trillion digits!

Experimental 
mathematics 
leads to    
new insights

 WWW.RESEARCHMEDIA.EU 71

 PRO
FESSO

R JO
N

 BO
RW

EIN



Number crunch!
A study being conducted at the University of Newcastle in Australia 
is building on previous research that shows how modern computers 
can discover completely unexpected relationships and formulas

USING CONTEMPORARY COMPUTER 
technology for active research is commonly 
referred to as experimental applied mathematics. 
This method of study is utilised for insight and 
intuition: to discover correlations and relationships, 
test conjectures and confirm results derived by 
analytics (similar to laboratory experiments in 
physical science). The practice is not far removed 
from what is known in pure mathematics as 
experimental mathematics. 

Over the years, advances in computing have led the 
way for progression in the field. This is particularly 
true for Professor Jonathan Borwein of the 
University of Newcastle, Australia. Over the past 
25 years, Borwein has developed and cultivated 
several series of results that were not possible via 
traditional methods. This was done across three 
research centres – in Vancouver, Canada and now 
Newcastle – all of which were built by Borwein. 

Among the plethora of highly technical findings 
gathered by Borwein and his group, perhaps 
the most famous are the computer-generated 
reverse-engineered results, as found by Borwein’s 
brother, Peter, along with two other researchers, 
David Bailey and Simon Plouffe. They discovered a 
formula – the eponymous Bailey-Borwein-Plouffe 
(BBP) formula – that allows the binary digits of 
Pi and other constants to be determined without 
knowing the previous digits, as Borwein elaborates: 
“Last year, 25 hexadecimal digits (100 bits) of Pi 
starting at the quadrillionth (10 to the power 15) 
position were computed by Ed Karrel at Nvidia, 
the graphics processing unit company. Until 1996 
it was thought to be impossible to ever compute 
things like this. The discoverers of the BBP formula 
were the only mathematical finalists for the first 
Edge of Computation Prize, and sat alongside the 
founders of Google, Netscape, Celera, among 
others”. The prize was ultimately won by the 
founder of quantum computing, David Deutsch. 

EXPERIMENTAL MATH-ODOLOGY

There are several main areas of research in the field 
of experimental mathematics that are of 

notable importance at present. 
For years, the majority 

of applied mathematicians and researchers have 
actively integrated computer technology into their 
studies. Characteristics of such computationally 
assisted, applied mathematical research includes: 
computation and simulation for exploration and 
discovery, symbolic computing, high-precision 
arithmetic, integer relation algorithms, graphics 
and visualisation, and connections with non-
traditional mathematics.

The key findings of Borwein’s study have thus far 
been nothing short of spectacular – particularly 
the results on the structure of short, random 
walks and flights; randomness of the distribution 
of digits of numbers; and other technical areas, 
including the creation of fast algorithms used 
for hard image reconstruction issues. However, 
it is the evolution of the study’s methodological 
underpinnings that Borwein finds most exciting. 
He calls it ‘experimental mathodology’, a 
name derived from a fortuitous misspelling of 
‘methodology’ (Borwein liked it and decided to 
keep it). These underpinnings are: gaining insight 
and intuition, discovering new relationships, 
visualising math principles, testing (especially 
falsifying conjectures), exploring a possible 
result to see if it merits formal proof, suggesting 
approaches for formal proof, computing and 
thereby replacing lengthy hand derivations, and 
confirming analytically derived results.

The study has garnered much academic 
insight, the lessons of which will develop 
experimental mathematics in the classroom. 
Borwein explains: “My postgraduate student 
Matt Skerritt and I have co-authored two 
Springer-Verlag books: Modern Mathematical 
Computation with Maple (2011) and Modern 
Mathematical Computation with Mathematica 
(2012) that introduce these tools into the 
undergraduate classroom. We have even taught 
the course using modern collaboration tools to 
a class with 15 students in Newcastle and 15 at 
James Cook University in Northern Queensland. 
This experimental approach to mathematics 
makes the subject lively and accessible to 
students who are either proficient 
or challenged in the field. 

EVIDENCING GIUGA’S 
CONJECTURE

Computing the digits of Pi is just 
one example of the work carried 
out by Borwein in experimental 
mathematics. Another area that has 
benefited from the use of modern 
computer technology and exploration 
is a mathematical conundrum called 
Giuga’s conjecture: a number theory 
conjecture which postulates that, with 
any positive integer n, we can confirm if 
n is a prime number by checking Guiga’s 
condition. This is achieved through 
calculating a sum, in which n is contained 
in the exponent of the summands.

The sum would have a specific value – s 
for example – only if n is a prime number. 
In other words, the sum would not have 
the value of s if n is composite. 

Despite dating back to the 1950s, 
the theory has never been 
proven. It is often considered 
too daunting for traditional 
mathematical methods. 
Borwein, however, has 
made significant findings 
through the use of 
computers. With 
colleagues, he 
was recently 
able to 
s h o w 
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that any number proving an exception to the 
theory must have more than 4,771 distinct prime 
factors and be greater than 19,907 decimal digits 
long. This means that any shorter composite 
number cannot yield the value of s. Although this 
doesn’t confirm the theory, it provides fascinating 
evidence in its favour. Indeed, it is only upon 
realising small breakthroughs such as these that 
mathematicians are compelled and inspired to 
seek full proof of a theory.

THE FUTURE OF EXPERIMENTAL 
MATHEMATICS

In terms of the future direction of his studies, 
Borwein is clear: “I expect much more 

emphasis on advanced visualisation in two 
and three dimensions as illustrated in the 

description of my recent work on Pi 
and other fundamental constants. I 

am heavily involved in attempts 
to make computational 

science research more 
reproducible and 

reliable,” he 
reveals. “This 

is an 

enormous task as it requires much more robust 
code than is currently available, which no one 
wishes to pay for, and a series of culture changes.”

First, researchers need to be convinced that 
ensuring reproducibility is worth their while, 
which will lead to increased productivity, less 
time spent recovering data or code, and a more 
efficient conversion from data to published 
papers. Second, the education system needs 
to provide more rewards at every institutional 
level, including departmental decisions, grant 
funding and the publication of papers. Currently, 
in the educational and industrial spheres, the 
main focus is on publication and project funding, 
rather than reproducibility. However, this does 
not favour those who spend much time following 
or developing community standards. Finally, 
the standards set for peer review need to be 
more robust: professionals, such as editors and 
reviewers, need to emphasise the importance of 
verification, validity testing and the full disclosure 
of computational details. Indeed, some details 
could be demoted to an online database or website, 
providing the information remains accessible. 

Despite these challenges, the future remains bright 
for the computational experimental approach 
in applied mathematics – an approach that has 

undeniably accelerated in the 21st Century, and 
will continue to do so.

VISUALISING THREE-STEP 
RANDOM WALKS. THE 
THICK CIRCLE SHOWS 
THE EXPECTED DISTANCE 
TRAVELLED

COMPUTER ASSISTED RESEARCH 
MATHEMATICS AND ITS APPLICATIONS

OBJECTIVES

This proposal has a pure and an applied part. 
The applied research is on a class of algorithms 
used successfully by many, but without real 
justification, for core signal reconstruction 
problems in astronomy, physics, bioscience, 
genomics, geoscience and medicine. Success 
will provide much better methods for such 
reconstructions and, equally importantly, an 
understanding of why and when they work. 
Success with the purer research, which still 
has immediate applications in other sciences, 
is also aimed at helping change the culture 
of mathematics at both a research and a 
pedagogical level.

FUNDING

Over the four years of the ARC funded project 
roughly AUS $550,000 came from ARC, 
with another $1 million from University of 
Newcastle funding for CARMA (the research 
centre)

CONTACT

Laureate Professor Jon Borwein

School of Mathematical and Physical Sciences 
Faculty of Science and Information Technology 
University of Newcastle   
University Drive   
Callaghan NSW 2308   
Australia

T +612 4921 5535    
E jonathan.borwein@newcastle.edu.au 
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