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ABSTRACT. The Norlund matrix N, is the triangular matrix {@,_; /An }, wherea, >
Oand A, = ag+a; + -+ +ap > 0.1t is proved that, subject to the existence of
o= limna-fA-_N. € B(L.) for 1 < p < oo if and only if & < co. It is also proved
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NORLUND OPERATORS ON [,

DAVID BORWEIN

ABSTRACT.  The Nérlund matrix N, is the triangular matrix {a,_; /A, }, where a, >
Oand A, = ap+ay +---+a, > 0. It is proved that, subject to the existence of
@ := limna, /Ay, Na € B{lp) for 1 < p < coif and only if & < oco. It is also proved
that it is possible to have N, € B(J,) for 1 < p < 0o when supna, /A, = oo.

1. Introduction. Let a := {a,} be a sequence of non-negative numbers, and let
An:=ag+a +---+a, > 0. The Nérlund matrix N, := {a,} is defined by
- !a,,_k/A,, for0 <k <n,
"o for k > n.
The N,-transform y = {y,} of the sequence x = {x,,} is given by

n ~=— (Nax)n :"" z Ap—j X+
An =0
Suppose throughout that
I<p< 1 + 1 =1,
P q
and define
1 n+1y1/p
U](n) '_Z:,E)an_k(__k'l-l) i

R Ap k1012
"2(">--,§ A, (rH—l) d

M, :=supoy(n), M, :=supos(k).
k20

n>0

Let

[Nz “p =

xllp=
where
4
el 2= (3 I )
so that N, € B(l,), the Banach algebra of bounded linear operators on J,, exactly when
[ Na||, is finite (in which case it is the norm of N,,).
The following theorem concerning sufficient conditions for N, € B(l,) is due to Bor-
wein and Cass [1, Theorem 2].
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NORLUND OPERATORS ON /p

TueorREM A.  If
(1) f?:am

then N, € B(l,) and ||Nallp < M, ’[qMé/p < 00.

Kratz [3] showed that (1) is in fact necessary and sufficient for N, € B(lp)

Cass and
when
(2) ap = f(@n),

on for all sufficiently large positive values

where f(x)is alo garithmico—exponential functi
or infinite limit when (2) is satisfied, and

of x. They showed that na, /Ay tendstoa finite
proved:
THEOREM B.  Suppose that an is given by (2), and that na, [An — @
(i) Then Ny € B(l,) if and only if a < 00
(ii) If o < 00, then
] I+ 1T /q) /gyl /P
— T T <INl £ M,'" < 0.
r}—l—orgo o1(n) Ta+1/q) ~ (1Nallp < M, "M >0
Condition (2) is redundant when o = 0.

For a > —1, the Cesaro matrix Cg is the Norlund matrix N, with

(n+a— 1)
i .
n

an inequality of Hardy’s [4] that, for >0, Cy € B(lp) and

T+ DI/ q)
”CUC”P - r(a+ 1/q) E

It follows from

This is thus the attained lower bound of the norms of all Norlund matrices satisfying the
conditions of Theorem B(i).
how that the requirement that a, be generated by

The primary object of this paperistos
a 1ogarithmico—exponentia1 function is redundant in Theorem B(i), and can be replaced
by a far less restrictive monotonicity condition in Theorem B(ii). To this end we shall

prove:
THEOREM 1.  Suppose that nax [An— o
(i) Then N € B(lp) if and only if o < 0.

(ii) If o < 00, then
INally < M}/ M7 < oo,

and if, in addition, {na,} is eventually monotonic for every constant ¢ # 1 —a, then

I nra
tim o) = DS LD < Il
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Further, the monotonicity condition is redundant when o = 0

Ill § 4 we constru q C hat na An 18 uIlbOUIlded bl.l D
cons cta se uence {an} Su ht { ﬂ/ } tNa [S B(l )
a pr

ACKNOWLE] i i
I ——" v?igsﬁtl;d;Ngnt I-amfmdebted to Xiaopeng Gao, a graduate student at the
ety of Vestern ario, for the removal of a redundant monotonicity condition
e el s maé (tfel.ow.)._l had proved these results subject to {a,/A,}
being eventualy onic. :-10 s incisive analysis of my original proofs showed how
Y CO e adjusted to establish the present more satisfactory forms of the results

2. Preliminary results.

L :
EMMA 1. Suppose that {a,/A,} is positive and null. Let

h:= h(n) := rzxg[i—:]

Then
4> 3 qzﬁ—am

n—h<k<n
Further, if na, /A, — 0o, then h(n) = o(n).
PROOF.  Suppose without loss that n — k > 1. Then

A dx n
lOg n s n X e Ay dx n ak
An—p-1 f“'""‘" x k=nz—h [A*—l [3 = k:éikA_k

>+ 1)mnt >1
k<r Ak =3

and so
Anht 1
A, T e
Thus
1 n
Izak—l n—k—1>l 1
r k=n—h o e
Now suppose that na, /A, — oo. Then, for m > 1
s h(n) o |
0< hmsupT < lim —ma.xl3 + lim sup max Eé"-
T n—oo B k<m ay n—oco m<k<n n kay,

A
< max — —
_k2mkak 0as m— 0o.

It follows that h(n) /n — 0.
LEMMA 2.  Suppose that na, /A, — o where 0 < o < co. Then

lim nfa, = [*® ¥e>1-a
el 0 egl—d
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PROOE. Let g
n - A
n

Then, as n — 09 ﬁ)NE
logAn — logAr-1 = —108 (1 " n n

and hence ak) = (a+ o(1))logn.

n—1
logA, = logAo — Zm(l Tk
=l ijon follows.

a-1+0(1) The desired conclusion 10

is eventually positive
henc < 1—a.

L]
a+o(l) and so ap ~ ON
a< o0 6<1, and that n‘a, :
. and eventually decreasing w

Consequently A, ~ 7t
Suppose that 0 <

MMA 3. °
o g when the constantc > 1

and increasin

— OQ, o
Then, as i w

E 5 :
1 .24 —
I(n) ::;Z_k'(l_'rml) T(a+1-9

PR > 1

(E)_cz o2k o (E)-C! forn>k=N.

n/ T an P
Since lim na, = 09,
n—oo
. -5
we obtain INa gk ) =0,
tim = ¥ (1=~

n—o0 1 (=g On

and hence { & e (1 ~ k )—5
limsupI(n) < lim — kE:ZN(;) n+1 "
= 1 5 ME_(-I—:—
=j‘;} x_ﬂ(l'_x)_ dx = ]_"(2._(;1—6)
and _ k -6
YA ke
liminfI(n) 2 lim — EN(;) ( n+ 1)
- S o
=f0x—cz(1—x)' &= "T5_c—0) 3
1 the destr
from the rightand 2 — 1 — & from the left, we ¢
Lettingcp — 1 — @
conclusion. o result [2, Theorems 2.

The following lemma is a special case of akno
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LEMMA 4. If {b,} is a sequence of positive numbers, and if

2 oa, g rbn\1/p X @y rba\1/4
p1i=supy. c—l"—k(—ﬁ) < ooand ;= supzf”—k(——) < 00,
n>0 k=0 Ay bn k>0 n=k An bk

then N, € B(ly) and ||N,, < p}/%,}/7,

LEMMAS.  If{b,} is a bounded sequence of positive numbers such that ¥ b, = 0o,
and if, as n — oo,

2 Qug (_'b_.li

1/p o
5 ) — o (finite or infinite),

=0 An
then ||N||, > o.

PROOE. Observe that if

n by -1
D, = H(l - —) where b > sup by,
k=0 b £>0
andd, := D,—D,_; forn > 1, thenb, = bd, /Dy and D, — 00. The desired conclusion
is now a consequence of a known result [2, Theorem 4]. m

3. Proof of Theorem 1.

PART (i). In view of Theorem A, it suffices to show that N, & B(l,) when o = 0.
Suppose therefore that o = co.

If limsupa, /A, > 0, then 3 |a,/A,/P = oo, but this implies that N,e® ¢ I,, where
" =(1,0,0,...), so that N, ¢ B(,).

Suppose that lima, /A, = 0. Since o = 00, we have, by Lemma 1 with§ := 1 /p
that, as n — oo,

(n+1¥ 2 (n+1)Y

o1(n) = San+1-k0>
k=0

> aln+1—k)®

n n—h<k<n
n+1y61 1y rn+14é

> i) > 1—-)( ,
—(h+1) A,,,,_hZSkS,,a"—( e h+l) —®

It follows, by Lemma 5, that N, & B(lp).

T

PART (ii). The case o = 0 is part of Theorem B, so suppose that 0 < a < co. Since
nap = O(A,), it follows from Theorem A that N, € B(lp) and ||N,||, < M: / QM;/ P < .

The monotonicity condition together with Lemma 2 ensures that a, satisfies the mono-
tonicity conditions of Lemma 3. Hence, by Lemma 3 with § := 1 /P

na, Ila + DI(1/q)
A, D el )

o1(n) =

and so, by Lemma 5,
T+ 1I'(1/qg)
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4. Construction. We construct a sequence {a,} such that {na, /A,} is unbounded
but N, € B(lp) for all finite p > 1. Let
B = {1 whenn=m?,m=0,1,...,
" 10 otherwise.

Then, for n = m?,
nay m?
RO o0 A8 i — OO
An m+1

Thus {na»/An} is unbounded.

Now define
LB ., by 1/p X aAp—k ba 1/q
S = — , Sk = — = ;
1(n) 230 A (bn) 2 ngk e (bk)

k=

where 1
b,:= .
. vn+l

that N, € B(lp) it suffices, by Lemma 4, to demon

strate that S1(n) =

In order to prove
0(1) and Sy(k) = O(1).

Forl<m<n<(m+1)%6:= 1/(2p), we have

2 s Y & TN
Si(n) = % J:Y;;ak(wfi B =— ;)(nn k)
i 1 (n+1Y "’il(mz_kz)—a

5 )
<(n+1)(n+1 m-) . %
m+1 m+1 m+1l O

m—1
<m+ )P e me )+t 2l S (m— R
=1

m—1
(m+ DE 4 (m+ 1)+ (m+ D2 S K
k=1

—om¥ ' +m ™ + m®1 . mi=%) = 0(1).

Further, for 1 <m? <k+1<(m+ 12, p:= 1/(2q), we have

2 Apn—k
$:0 = G4 1Y 3 3 T
n=k {3n
2k Qpk 00 an
< z : kel S ———
YRV Ww ru A R RS

® 1
o gl D Y = O(m® - m~*) = O(1).

Hence N, € B(p)-
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