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A TAUBERIAN THEOREM CONCERNING
BOREL-TYPE AND RIESZ SUMMABILITY METHODS

DAVID BORWEIN

ABSTRACT. It is proved that the summability of a series by the Borel-type summa-
bility method (B, a, 3 ) together with a certain Tauberian condition implies its summa-
bility by the Riesz method (R, log(n + 1),p)

1. Introduction. Suppose throughout that « > 0, aN + 3 > 0 with N a non-
negative integer, p > 0, and s, := ag+aj +- - - +a,. The Borel-type summability method
(B, @, 3) and the Riesz method (R, log(n+ 1), p) are defined as follows:

. ] ran+,8 =1
Spn— s(B,a, ) if xe™ Sp———————— — §as X — 00;
( #) nZ;N T(an+p)
P
s,,—as(R,lag(n+1),p) if > (1 _M) a, — 5asw— 0Q.
log(n+1)<w w

Both methods are regular, and (B, 1, 1) is the standard Borel exponential method B.

Let
by 35 Ziv'+1
T 2 5
il r
LA N P TS
' and, fork = 2,3,...,
.' FOPNLIE o 51
i ® = L Shr+l’

The k-times iterated weighted mean method (M, 1/ (n + 1), k) is defined by:

sn— s(M,1/ (n+1),k) if £ — s as n — oo.

The object of this paper is to prove the following Tauberian theorem.
THEOREM. Suppose that s, — s(B, a, 3) and

(1) sn = O((n'/?logny),
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where p is a positive integer. Then s, — s(R, log{n + 1), p).

The case @ = 3 = 1 of the theorem was recently established by Kwee [8]. Our proof
owes much to his. The present theorem is more general than Kwee's result since it is
known ([1, Result (I)] and [2, Lemma 4]) that

ifs, = s(B,a,B)and a > v > 0, then s, — s(B,Y,6) provided

_l‘l'
I'(yn+ T(Yn+6) )
is an entire function of z for N sufficiently large.

The proviso is certainly satisfied when (1) holds.

2. Preliminary results.
LEMMA 1 [1, RESULT (I)]. Ifs, — s(B,a,3) and§ > 3, thens, — s(B, a,8).
LEMMA 2 [4, THEOREM 1]). If s, — s(B,a,3) and sp — Sp—1 = O(n~Y2), then

Sp—+S.
This is a special case of a general Tauberian theorem [5, Theorem 1].

LEMMA 3. For k a positive integer, s, — s(M, 1/(n+1), k) if and only if s, —
s(R.log(n + 1), k).

This is due to Kwee [8, Lemma 4] who deduced the equivalence from Kuttner’s result
[7] that the methods (M, 1/(n+1), k) and (R, L,, k) are equivalent.

LEMMA 4 [3, LEMMA 2]. Ler

xcm+,@ -1
"0 T an By
andlethy, :=n— %, ] << 3, and0 < n < 2§ — 1. Then, as x — 0o,
(i) E cnl(x) — 1;
n=N "
(i) Y, calx)=0(™);
| Bn| >x¢
a
(iii) cu(x) =
i V2nx
LEMMAS. Supposethat k is a positive integer, and that s, — s(B, &, 3). Then 19 —
s(B,a, 3).

PROOF. Since {1/L,} is totally monotone there is a non-decreasing function x on
[0, 1] [6, Theorem 207] such that

o lh?
exp (— an) {1+0G7%)} when |h,| < x£.

1 1
@) T = 7 dx;
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moreover, since 1/ L, — 0, we must have x(1) = x(1-).
Suppose as we may without loss of generality that s = 0 and, in view of Lemma 1,

that = max(l, ). Let x > 0 and

Ve = 2 r(afw)'
Then
3) Y (x*) = o(x' P ") as x — 0.
We first prove that
@) B(x) == ¢™* f: tn ————rf; ::;) — 0 as x — 0.
We have
$(x) = iﬁ% = Pl f: YD) dt = axP—! [0 () dr.
Hence, by (3),
P = 0"+ O(xﬂw-a)flx/ a8 ot gy 4 o j 0(® A ey dt
) = O Y4 0PV % 0P~ (1 2P )

(5
=0 — | asx—00.
X

Next, by (2),

00 I‘I+ﬁ 1

B(x):e—xn Dm_)f: dx(t ),Zan H]
ol ekt > (xr)*" Sn—r
= f dx(t ):;0; Tan+B)n—r+1
(xt)an+ar+ﬁ 1 Sn

= 58! -*f dx(r")Z(xt)' —# f

the inversions in the order of operations, here and subsequently, being justified by abso-
lute convergence. Since

“Tan+ar+B)n+1’

(xt)am-an-ﬁ—l _ 1

= _ o par—1 un+,8—ld
INan+ar+ ) - l"(ar)r(crn-!-,ﬁ)fﬂ G- “ “

when r > 0, it follows that

s o0 ( ; — )ar—l
By = 1 [ ax (' (W’)“fo sy Tre )

=B1e j: dy (1*)(xr)' P (qf)(m')-t»'/{;Jrr E(xt — u)cb(u)du),
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where
oo Xarfl et
E(x) := e Z
(6) ) Enar) o il

by Lemma 4(i). Hence
Bx)=+"le” j;l dx (o) ™ (¢(xr)+xj; E(xt — xu)¢ (xu) d“)
Yl =l Ll ) P ¢ () dx (%)
58 g fol(x;)‘fﬁqS(xr)dfj;l(u/ 1)! P E(xu — xt)dx (%)

Now let

oo 1 xan+;3—l
F(x) .= T T
) §0n+lr(an+ﬁ)

so that F(x) is value of ¢ (x) when s, = 1. Then
1 2 an+f yoenat e
F(x) = — o i
x) x,,g:o n+l Tan+3+1) xasx—»oo
by the regularity of (B, @, 3 +1). Hence, by (5),
¢(x) = o(F(x)) as x — 00
and so, given € > 0, there is an xp > 0 such that
|6 (x)| < eF(x) for x = xo.
Further, replacing ¢ (x) by F(x) in (7) yields a B(x) which tends to 1 / a as x — 00
and, since 8 = 1,10 0 as x — O+, and hence this B(x) is dominated by a constant M
for all x > 0. Thus the contribution to (7) of the parts of the integrals over the range
xfasts 1 is in modulus less than eM for all x > 0. Since € can be taken arbitrarily
small, in order to establish (4) it suffices to show that the contribution to (7) of the parts

of the integrals over the range 0 < 1 < xg/ x tends to 0 as x — ©0.
Since vI—? ¢ (v) is bounded for 0 < v < Xo. it follows that

Bl f‘“/x(xr)l—%(xr)dx(r") =0 (xﬁ"e*‘ Ll dx(r")) = ofl) as x — 0.

0
Further, by (6) and because § > 1,

P (,m(xr)“ﬁ oGt [ (/0P B — xt) dx (")

Xy

= —x %o/ x z0f x u—xt fe4 of ¥ 1 1-8 xu—xt a
By 0([0 r [ e dlu )+f0 drfwx(u/z) 4 dy(u ))
i xof x - u 1 T o KofX 5 4 o
=xe O(e"’fon dx(u )ﬂ)dHL/x"I B dy(u )./(;0 #le ”dr)
= O(xﬂ—le")+0(e“‘ fl u g dx(u")]xnrﬁéle"dr)

xofx 0
_ 12 1-8 xu—x o ) -8 xu—x a
_»o(l)+0(flufxu &4 dy (u )+ﬁ/2u & dy (u®)

= o(1)+ OGE~1e ) + 0(1) = o(1) a8 x — 00,
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the final i i
e final integral tending to 0 by the Lebesgue-Stieltjes theorem on dominated conver-

gence since, for 1/2 <u < 1, u!™8 > yl=8ux
A8 G T e —iOﬂSI—)oo’andX(ua)q_‘X(l)
This establishes the case k = 1
= 1 of the lemma. i i .
obtdinihesequiredireselt. a. Applying this case k — 1 times, we
| ]

LEMMA 6. Suppose that s, — s(B
. n — S(B, a, 3) and that (1) holds with p a positive integer.

(k) _ =
L= 0((n1/210gn)” k)fork: 1,2,...,p.

PROOF. Assume again thats = 0. Letx > 0 % <¢(<io<np<2-1
> 3 - 1,

n

. x Py
h,,—.n—-;, m:= [—],andB,.:z —-f-r-—.
¢4 =0Tt 1
Then
8
(8) L, ~lognand B, = O((nl/zlogn)‘” log n)
and, by Lemma 5,
) T = e 3 gy 2
= y——— =
nz=0 Tant8) o(1) as x — 00,

Write

T = € 3By — Byt 4 oip, 3 X
"o b L.T(an+ () "o Lal(an + )

) =: T1(x) + Ta(x),

11 =g
(11) Tix)=¢ ( S o+ > o+ Z):: S1(x) + S2(x) + S3(x).

ho<—xt  |ha|<xt  h,>xb

By (8) and Lemma 4(ii), as x — 00,

(12) $i1(x) = o(m"/?ao +g=x X
gmyP e e —x?
2 F(an+ﬁ)) =0
and
S3(x) = 0 (e—“ (n]/2] Lﬁ_]
(13 S Tansp)

P xan+.8—l
=06t T = e | = e
( 2 Fan+B —P>) =
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By (8) and Lemma 4(iii), as x — 09,

n+3 —1
Sx) = 0 (e—x ‘h%t{(“w + l)x(p—Zh’Z(logx)p———L"r(an +5))

l_cm-i'B-l
e B

| | <k
1 a_"hi)
= o= _
o :o(xw YtorsY .h,z-:\x.s"""“”\/zn—x"""’( 7 )

o’
=0 (x‘H}/ Y(logx)*~! f_ D:o(ir! +1)exp (——Zx—) dr)
= O(x(‘”"”/ Hlogxy~') + O(x"’_z’/ 2logxy")
= o((x"/*logxy™").
It follows from (10), (11), (12), (13) and (14) that
(15) Ti(x) = O((x'/*logxy~") as x — oo.

Next,

(16)  To0) = ¢ Bn ( o r sy ) =i WG+ VR % ab)
h

W< —xb |ha|<xt B>t

By (8) and Lemma 4(ii), as x — 09,

xB6=1 1og x xan+f—1 logx)
i Vi(x) + Va(x) = € 1m0 (;.Exé T(an+8) * nsw Tlan+p)
= O(tme™).
Finally, as x — 00,
=l ( 1 )
_ —x —_— = | — +0(1) 3
(18) Vi) = €™ X Tant ) L a

since Ly, L, in the above sum lies between L/ Lix a4zt @04 Lin / Lix a—xt) €ach of which
tends to 1 as x — oo and, by Lemma 4(i) and (i),
- n+3—1 1
xnn+ﬂ 1 ] . 0 xa + _ 1
im e~ — = 1lime - = —.
Xll‘r&e hz>::‘ Tan+pf) ot ,E)F(anhﬁ) o4

It follows from (16), (17) and (18) that

T2(x) = Im (é +o(l)) as x — 00,
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and hence from (9) and (15) that
by O((x’fllogx)”’l) as x — 00.

Taking x = an, we get
ta =1V = O((n”zlogn)p*]).

When p > 2 we can replace ¢, by tffJ in (9) and argue as above to obtain
i 0((n]"2]03 n)p_z).
The proof can now be completed by induction in the obvious way.

3. Proof of the theorem. By Lemma 6,

=1 (p—1)
o 1 o
TN e+ Dhey (4 DLy, S r+ ]

= O(n_'/ .
Hence, by Lemma 5 and Lemma 2,
rg’) —+ 5 as n — 00,

and so, by Lemma 3,

Sp — s(R, log(n + 1),p). »
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