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TAUBERIAN THEOREMS CONCERNING POWER
SERIES WITH NON-NEGATIVE COEFFICIENTS

D. BORWEIN* (London, Ontario)

1. Introduction

Suppose throughout that {a,} is a sequence of non-negative number,
that

n
Sp 1= E ar
k=0

and that

[ o]

0<f(:c)::2akxk<oo for 0<z<1.
k=0

Hardy and Littlewood [4, Theorem 10] have proved the following theo-
rem.

TueoreMm H-L. If
f(z)~(1-2)"?L(z) as z—1—,

where p 20 and L(1- %) is a logarithmico-ezponential function such that

1
u"5—<L(1——) -<u5,
U

nf 1
PV (1‘5) |
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See (3] for definitions and properties of logarithmico-exponential functions.
Examples of logarithmico-exponential functions satisfying the above condi-
tion are given by

L (1 - l) = (log )" (loglog u)* ...,

where ¢, ¢3, ... are real numbers. Theorem H-L is Tauberian in nature
in that it yields information about the asymptotic behavior of s, from the
asymptotic behavior of f(z).

The primary object of this note is to supply a simple and straightforward
proof of the following generalization of Theorem H-L.

THEOREM 1. (i) Suppose

i JEg e
(1) lim o) =An>0 for m=2 and 8,

Then
f(z)=(1-2z)""¢(z)

where p=—logy A2 20 and, for all 121,

$(z)
m —==1.
s—1- ¢(z)
Moreover
nP it 1 1
Sn ™  fpet X L
r(p+1)¢( ;) r(p+1)f( 3
and
(2) Say1~s, and lim i=)\m>0 for m=2 and m=3.

n—=0o0 Smn
(ii) Conversely, (2) implies (1).
If follows from Theorem 1.8 in [5] that the integers 2, 3 in (1) can be
replaced by any two positive numbers p, ¢ # 1 such that log, p is irrational.
It was proved in [2] that

. f(=?)

(3) x]_1+r{1_ @ A>0

alone does not imply (1) when X < 1, though (1) and (3) are equivalent when
A=1. Part (i) of Theorem 1 can be deduced from Karamata’s Tauberian
theorem and a known result about regularly varying functions (see Theorems
2.3 and 1.8 in [5]). We give an alternate proof which is more direct and more
elementary, not involving, in particular, the extended continuity theorem for
Laplace-Stieltjes transforms on which the proof of Karamata’s theorem is
based. Part (i) of Theorem 1 is interesting in that it shows that (1) and (2)
are in fact equivalent.
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2. Preliminary results

THEOREM 2. Suppose b, 20 forn=0,1,...,

n o0
tn:=Zbk, and g(x):=2bnz“<oo for 0<z<1.

k=0 n=0
If (1) holds and % —Xasz—1—, then I > ).

ProOF. The result is evidently true if f(z) tends to a finite limit as
z — 1—. Suppose therefore that f(z) > oo as z—1—.

Case (i):an >0 for n=0,1,.... This case follows immediately from the
theorem in [2].

Case (ii):a, 20 for n=0,1,.... Let

fr(z):=f(z)+e, g*(z):=g(z)+e€*
and define aX, s, b%, t* in the obvious way. Then a} >0 for n=0,1,...,

and, since f(z) — oo as z — 1—, (1) is satisfied with f* in place of f. Further

*
M—»A as z—1-— if and only if ‘q—(ﬂ@)\ as z—1—,

f*(=) f(=)
and
i . o In
—— X if and only if — =\
n Sn
Case (ii) now follows from Case (i). O
LEMMA 1. If (1) holds, then, for m=1,2,... and p=—logy A2 20,

o fEm) -
zl-inll- f(:f.‘) =m ’

and, for every c € (0,1),

. —logc)?
g B, o OB,
nmoo f(cl/m) _ T(p+1)

. Proor. The result is evidently true with p=0 if f(z) tends to a finite
limit as £ — 1—. Suppose therefore that f(z)— oo as z —1—. It has been
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shown in [2] that this together with (1) implies the first conclusion. Further
when p >0, ,

1 t

(m+1)""= [ t™d with ;:_1.. Ny T a1
m+1) 0/ x(t) with  x(t) r(p)D/(lg) du.

It was proved in [1] that the above implies that, when p =0,

S

lim —* — =
neo f(ct/m) =

and, when p >0,

1 1
. e N P p—14, _ (—loge)?

The next lemma has been proved in essence in [1].

LEMMA 2. If spi1~s, and lim f:; = A>0 where m is a positive in-

n—oo

teger, then

oo f(a™) i
k3 (=) =A

3. Proof of Theorem 1

(1) The ﬁrst conclusion has been proved in [2]. To establish the asymp-
totic expression for s, observe that, given y > 1,

e_"f/n < 1_1 < e—l/n
n

for n sufficiently large. Hence for such n
3 s s

FeT) 2 FT = 1m) 2 Fei7my

and so, by Lemma 1,

_ >limsup ——%— > lim jnf . 5,0
P(P‘I‘l) n—o6o0 f(l —1/1’1) = nooo f(l —1/n) = F(p-{»l)

Since ¥# — 1 as ¥ — 1—, it follows that
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lim il = A
w5 FI —1/m)  T(p+1)’

ie.,
n’ 1 1 1
9 st | Pl | i il 3 SN
& I‘(p+1)¢-( n) T(p+1)f ( n)
To establish (2) we first observe that, by Lemma 1,
s

B g S fleley o5
nh—»rgo S —nh—wnéc f(e—ljn) S f(e—lfﬂm) AL

Next we suppose without loss of generality that s, — oo. Then, by Theorem
2 with b, = @41, we see that

= tn - -
9(z) _ f(=) 0 18 z —1—, and hence P i Y

fz) f(=) S $n

so that 8,41 ~ Sp.
(ii) This follows immediately from Lemma 2. O
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