TAUBERIAN THEOREMS CONCERNING POWER SERIES WITH NON-NEGATIVE COEFFICIENTS

D. BORWEIN* (London, Ontario)

1. Introduction

Suppose throughout that $\{a_n\}$ is a sequence of non-negative number, that

$$s_n := \sum_{k=0}^n a_k$$

and that

$$0 < f(x) := \sum_{k=0}^{\infty} a_k x^k < \infty \text{ for } 0 < x < 1.$$

Hardy and Littlewood [4, Theorem 10] have proved the following theorem.

THEOREM H-L. If

$$f(x) \sim (1-x)^{-\rho} L(x)$$
 as $x \to 1-$,

where $\rho \geq 0$ and $L(1-\frac{1}{u})$ is a logarithmico-exponential function such that

$$u^{-\delta} \prec L\left(1 - \frac{1}{u}\right) \prec u^{\delta},$$

then

$$s_n \sim \frac{n^{\rho}}{\Gamma(\rho+1)} L\left(1 - \frac{1}{n}\right).$$

^{*} This research was supported in part by Natural Sciences and Engineering Research Council of Canada.

See [3] for definitions and properties of logarithmico-exponential functions. Examples of logarithmico-exponential functions satisfying the above condition are given by

$$L\left(1-\frac{1}{u}\right) := (\log u)^{c_1}(\log\log u)^{c_2}\dots,$$

where c_1, c_2, \ldots are real numbers. Theorem H-L is Tauberian in nature in that it yields information about the asymptotic behavior of s_n from the asymptotic behavior of f(x).

The primary object of this note is to supply a simple and straightforward

proof of the following generalization of Theorem H-L.

THEOREM 1. (i) Suppose

(1)
$$\lim_{x\to 1-}\frac{f(x^m)}{f(x)}=\lambda_m>0 \quad for \quad m=2 \quad and \quad m=3.$$

Then

$$f(x) = (1-x)^{-\rho}\phi(x)$$

where $\rho = -\log_2 \lambda_2 \ge 0$ and, for all $t \ge 1$,

$$\lim_{x \to 1-} \frac{\phi(x^t)}{\phi(x)} = 1.$$

Moreover

$$s_n \sim \frac{n^\rho}{\Gamma(\rho+1)} \phi\left(1 - \frac{1}{n}\right) = \frac{1}{\Gamma(\rho+1)} f\left(1 - \frac{1}{n}\right)$$

and

$$(2) \quad s_{n+1} \sim s_n \quad and \quad \lim_{n \to \infty} \frac{s_n}{s_{mn}} = \lambda_m > 0 \quad for \quad m = 2 \quad and \quad m = 3.$$

(ii) Conversely, (2) implies (1).

If follows from Theorem 1.8 in [5] that the integers 2, 3 in (1) can be replaced by any two positive numbers $p, q \neq 1$ such that $\log_q p$ is irrational. It was proved in [2] that

(3)
$$\lim_{x \to 1-} \frac{f(x^2)}{f(x)} = \lambda > 0$$

alone does not imply (1) when $\lambda < 1$, though (1) and (3) are equivalent when $\lambda = 1$. Part (i) of Theorem 1 can be deduced from Karamata's Tauberian theorem and a known result about regularly varying functions (see Theorems 2.3 and 1.8 in [5]). We give an alternate proof which is more direct and more elementary, not involving, in particular, the extended continuity theorem for Laplace-Stieltjes transforms on which the proof of Karamata's theorem is based. Part (ii) of Theorem 1 is interesting in that it shows that (1) and (2) are in fact equivalent.

2. Preliminary results

THEOREM 2. Suppose $b_n \ge 0$ for n = 0, 1, ...,

$$t_n := \sum_{k=0}^n b_k$$
, and $g(x) := \sum_{n=0}^\infty b_n x^n < \infty$ for $0 < x < 1$.

If (1) holds and $\frac{g(x)}{f(x)} \to \lambda$ as $x \to 1-$, then $\frac{t_n}{s_n} \to \lambda$.

PROOF. The result is evidently true if f(x) tends to a finite limit as $x \to 1-$. Suppose therefore that $f(x) \to \infty$ as $x \to 1-$.

Case (i): $a_n > 0$ for n = 0, 1, ... This case follows immediately from the theorem in [2].

Case (ii): $a_n \ge 0$ for $n = 0, 1, \ldots$ Let

$$f^*(x) := f(x) + e^x, \quad g^*(x) := g(x) + e^x$$

and define a_n^* , s_n^* , b_n^* , t_n^* in the obvious way. Then $a_n^* > 0$ for $n = 0, 1, \ldots$, and, since $f(x) \to \infty$ as $x \to 1-$, (1) is satisfied with f^* in place of f. Further

$$\frac{g^{\star}(x)}{f^{\star}(x)} \to \lambda$$
 as $x \to 1-$ if and only if $\frac{g(x)}{f(x)} \to \lambda$ as $x \to 1-$,

and

$$\frac{t_n^{\star}}{s_n^{\star}} \to \lambda \quad \text{if and only if} \quad \frac{t_n}{s_n} \to \lambda.$$

Case (ii) now follows from Case (i). □

LEMMA 1. If (1) holds, then, for m = 1, 2, ... and $\rho = -\log_2 \lambda_2 \ge 0$,

$$\lim_{x \to 1-} \frac{f(x^m)}{f(x)} = m^{-\rho}$$

and, for every $c \in (0,1)$,

$$\lim_{n\to\infty}\frac{s_n}{f(c^{1/n})}=\frac{(-\log c)^{\rho}}{\Gamma(\rho+1)}.$$

PROOF. The result is evidently true with $\rho = 0$ if f(x) tends to a finite limit as $x \to 1-$. Suppose therefore that $f(x) \to \infty$ as $x \to 1-$. It has been

shown in [2] that this together with (1) implies the first conclusion. Further, when $\rho > 0$,

$$(m+1)^{-
ho}=\int\limits_0^1t^md\chi(t)\quad ext{with}\quad \chi(t):=rac{1}{\Gamma(
ho)}\int\limits_0^t(-\log u)^{
ho-1}du.$$

It was proved in [1] that the above implies that, when $\rho = 0$,

$$\lim_{n\to\infty}\frac{s_n}{f(c^{1/n})}=1,$$

and, when $\rho > 0$,

$$\lim_{n \to \infty} \frac{s_n}{f(c^{1/n})} = \int_{c}^{1} t^{-1} d\chi(t) = \frac{1}{\Gamma(\rho)} \int_{c}^{1} t^{-1} (-\log t)^{\rho - 1} dt = \frac{(-\log c)^{\rho}}{\Gamma(\rho + 1)}. \ \Box$$

The next lemma has been proved in essence in [1].

Lemma 2. If $s_{n+1} \sim s_n$ and $\lim_{n \to \infty} \frac{s_n}{s_{mn}} = \lambda > 0$ where m is a positive integer, then

$$\lim_{x \to 1-} \frac{f(x^m)}{f(x)} = \lambda.$$

3. Proof of Theorem 1

(i) The first conclusion has been proved in [2]. To establish the asymptotic expression for s_n observe that, given $\gamma > 1$,

$$e^{-\gamma/n} < 1 - \frac{1}{n} < e^{-1/n}$$

for n sufficiently large. Hence for such n

$$\frac{s_n}{f(e^{-\gamma/n})} \ge \frac{s_n}{f(1-1/n)} \ge \frac{s_n}{f(e^{-1/n})}$$

and so, by Lemma 1,

$$\frac{\gamma^{\rho}}{\Gamma(\rho+1)} \ge \limsup_{n \to \infty} \frac{s_n}{f(1-1/n)} \ge \liminf_{n \to \infty} \frac{s_n}{f(1-1/n)} \ge \frac{1}{\Gamma(\rho+1)}.$$

Since $\gamma^{\rho} \to 1$ as $\gamma \to 1-$, it follows that

Acta Mathematica Hungarica 59, 1992

$$\lim_{n\to\infty}\frac{s_n}{f(1-1/n)}=\frac{1}{\Gamma(\rho+1)},$$

i.e.,

$$s_n \sim \frac{n^\rho}{\Gamma(\rho+1)} \phi\left(1 - \frac{1}{n}\right) = \frac{1}{\Gamma(\rho+1)} f\left(1 - \frac{1}{n}\right).$$

To establish (2) we first observe that, by Lemma 1,

$$\lim_{n \to \infty} \frac{s_n}{s_{mn}} = \lim_{n \to \infty} \frac{s_n}{f(e^{-1/n})} \cdot \frac{f(e^{-1/mn})}{s_{mn}} \cdot \frac{f(e^{-1/n})}{f(e^{-1/nm})} = m^{-\rho}.$$

Next we suppose without loss of generality that $s_n \to \infty$. Then, by Theorem 2 with $b_n = a_{n+1}$, we see that

$$\frac{g(x)}{f(x)} = \frac{f(x) - a_0}{f(x)} \to 1 \quad \text{as} \quad x \to 1 -, \quad \text{and hence} \quad \frac{t_n}{s_n} = \frac{s_{n+1} - s_0}{s_n} \to 1$$

so that $s_{n+1} \sim s_n$.

(ii) This follows immediately from Lemma 2. □

References

- [1] D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull., 24 (1981), 309--316.
- [2] D. Borwein and A. Meir, A Tauberian theorem concerning weighted means and power series, Math. Proc. Camb. Phil. Soc., 101 (1987), 283--286.
- [3] G. H. Hardy, Orders of Infinity, Camb. Math. Tract No. 12.
- [4] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc., 13 (1914), 174-191.
- [5] E. Senata, Regularly Varying Functions, Lecture Notes in Mathematics, No. 508, Springer-Verlag, 1976.

(Received May 2, 1988)

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO, CANADA N6A 5B7