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ABSTRACT. It is proved that for a large class of sequences {1,} the summa-
bility at a point of a Fourier series - An(t) by the absolute Riesz method
[R, An, 1| is not a local property of the generating function. It is also proved,
inter alia, that, for every ¢ > 0, the |R, ., 1| summability of the factored
series 3 An(f)A;® at any point is always a local property of the generating
function.

I. INTRODUCTION
Suppose throughout that, for n=1, 2, ... ;
tn >0, j-n::‘ul*F/'LZ'!“""’*,MH_>OO»

and s, :=a, +a; +---+a,. The series 2. ay is said to be summable by the
absolute Riesz method |R, A,, 1] if

cw) == 3 (w=n)a,

An<w

is of bounded variation over (41, 00), and it is said to be summable by the
absolute weighted mean method |M, Un| if the sequence of means {¢,} defined

by
1 2
Iy = Z HE=1 Hy Sy

is of bounded variation, that is if

o
> At < o0,
n=1
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where At, := t, — t,41. It is well known, and easily verified, that these two
methods are equivalent.

Let
1 o 1 oC
500+ nz; Ap(t) 1= 300 + Z:l(o:n cosnt + f, sin nt)
o =

be the Fourier series generated by a periodic function F with period 2z which
is Lebesgue integrable over (-, m). It is familiar that the convergence of the
Fourier series at ¢ = x is a local property of F (ie. depends only on the
behaviour of F in an arbitrarily small neighbourhood of x ), and hence the
summability of the Fourier series at ¢ = x by any regular linear summability
method is also a local property of F. On the other hand, Bosanquet and
Kestleman [3] showed that the summability |C, 1| (= |M, 1|) of the Fourier
series at any point is not a local property of ¥, and Mohanty [7] subsequently
showed that this is also the case with summability |R, An, 1| when A, := £(n)
for n sufficiently large, where

fy(x):=x and 4 (x):=log(£;_,(x))

for k = 1,2,... and x sufficiently large. Mohanty also showed that the
|R,logrn, 1| summability of the factored Fourier series

oo

ZAn(t)/logn

n=2

at any point is a local property of F, whereas the |C, 1| summability of this
series is not. Matsumoto [5] improved the first of these results by showing that
the |R, logn, 1| summability of the series

> An(t)(loglogn)™?,  p>1,

n=3

at any point is a local property of F, and Bhatt [1] went a step further by
showing that the factor (loglogn)™? in the above series can be replaced by the
more general factor y,logn where {y,} is a convex sequence such that ¥y, /n
is convergent. Mishra [6] proved that if {y,} is as above, and if

An=0(nuy) and AnApn = O(ntini1),
then the summability |M, u,| of the series

= 3
> Ay(t)yn 2
_— Rty

at any point is a local property of F. This does not directly generalize any
of the above-mentioned results involving |R, logn, 1| summability since the
order relations are not satisfied by wu, := 1/n. Bor [2] recently showed that
|M, pn| in Mishra’s result can be replaced by a more general summability
method M, p,|i . The object of this paper is to prove the following two theo-
rems which include most of the above-mentioned results as special cases.
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Theorem 1. Suppose that a is a positive integer, and _that f z's.a positivs, un-
bounded function with an absolutely continuous positive derivative on [e%, oo)
such that, on this interval,

(1) xj:(lg) decreases to 0
and

(2) xf"(x) = O(f'(x))-
Suppose also that

(3) A= fle") for +nza,

and that 0 < a < B < 2m. Then there is a function F. Lebe;gue z'::zteg_rable
over (a, B) and zero in the remainder of (0, 2m), whose Fourier series 15 not

summable |R, An, 1| at t=0.

This shows that, subject to the hypotheses of the theorem, the.surnmabﬂllty
IR, An, 1| ofa Fourier series at any point is not a local property of its generating
function. Since the hypotheses are satisfied by f(x) := L(x) for k=1,2, ...,
Bosanquet and Kestleman’s result, and also Mohanty’s_ result, on the nonlocal
nature of the summability of a Fourier series by certain absolute methods are

special cases of Theorem 1.

Theorem 2. Suppose that the sequence {cn} is such that

(4) > el < o0
n=1""
and
(5) Z |Acn| < 00.
n=1
Then the summability |R, An, 1| of the factored Fourier series
Z An(t)Cr
n=1

at any point is a local property of the generating function F .
This theorem generalizes Bhatt’s above-mentioned result, since it is known

(see [1] for references) that if {ya} is a convex sequence such that 3 ya./n 18
convergent, then

oo
Yn = ¥ne1 >0 and ZlognAy,, < 0o,
n=1
and so (4) and (5) are satisfied by pun := 1/n, ¢y := ynlogn. Since, by Di1}1’s
theorem, Y Uni,!”% is convergent whenever & > 0, we have the following
corollary of Theorem 2.
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where the function % is as in the lemma. For 0 < ¢ < 27, t # n, we have that

> " h(in)cosnt] = h(An)cos® nt

b %Zh(&n) —% > h(An) cos2nt| = oo,
n=a h=a

by Lemma 1, the final sum being convergent because the sequence {h(4,)} de-
creases to 0. The required result now follows from a theorem due to Bosanquet
and Kestleman [3, Theorem 1]. O

Proof of Theorem 2. Since the convergence of the Fourier series at a point is
a local property of its generating function F, Theorem 2 follows immediately
from Lemma 2. O

Remark (added November 9, 1990). After this paper was accepted for pub-
lication I found out that Theorem 2 is in fact a special case of Theorem 3
in S. Baron’s paper, Local property of absolute summability of a Fourier series
and the conjugate series, Tartu Riikl. Ul. Toimetised Vih. 253 (1970), 212-228.
My proof, however, is somewhat simpler and more direct than Baron’s, partly
because he deals with more general summability methods.
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