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It is shown, inter alia, that under certain conditions the asymptotic relationhip

o0 oo
Y ause T~ Y aet as x—0+
n=1 n=1

between two Dirichlet series implies the same relationship with 4, replaced by A%,
O<ec<l1l. © 1990 Academic Press, Inc.

1. INTRODUCTION

Suppose throughout that A:={,} is a strictly increasing unbounded
sequence of real numbers with 4, >0, and that a := {a,} is a sequence of
non-negative numbers such that

Y a,=ow,and ¢(x):= Y a,e <o  forall x>0.
n=1 n=1

Let {s,} and {u,} be sequences of complex numbers. The Abelian sum-
mability method 4, (see [6, p. 71]) and the Dirichlet series method D, ,
(see [3]) are defined as follows:

Y u,=1(4,) it ) u,e™™
n=1

n=1

is convergent for all x > 0 and tends to /as x - 0+ ;

o0
S, 1D, ,) if Y a,s,e ™
n=:1
is convergent for all x > 0 and
I = ;
— Y a,s,e " slasx—0+4.

#(x) =,
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When A, :=n, the method A, reduces to the Abel method A, and the
method D, , reduces to the power series method J, (as defined in [2], for
example).

From now on we assume that p:={u,}, where u, =15, 0<c<1.

The purpose of this note is to prove the following two inclusion
theorems for the Abelian and Dirichlet series methods respectively:

THEOREM A. Suppose that 3= u,=1(A;), and that 37  u,e " is

n=1

convergent for all x>0. Then 377 u,=1(A,).

TueOREM D. Suppose that s,—I(D,,), and that Y7, a,e " and
> a,s,e ™ are convergent for all x>0. Then s,—1(D, ).

The case A,:=n”, p>0, of Theorem A is due to Cartwright [5]. An
alternate proof of this case appears in [6, Appendix V]. The versions of

both Theorem A and Theorem D with u, :=log4,, 4, =1 are also known
([6, Theorem 28] and [4] respectively).

2. A PRELIMINARY RESULT

Let g(x) :=e ™. Then g(0+ )= g(0) and, for x>0, g'(x) = —ex“"g(x),
so that

g(n+1)(x)= _Cxc—lg(n)(x)
~& % (2) (—1)F (1 —e}2—c) - (k- )z~ 1g M)

Since 0 < c < 1, it follows by induction that

(=1 g™} x)>0 for x>0,m=0,12,..;

Xt

ie., e ¥ is completely monotonic in [0, co). Therefore, by Bernstein’s
theorem [1, p. 567 (see also [7, p. 160]),

g—-f‘:L e “da(t) for x=0, (1)

and hence

oo .
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where «(z) is bounded and non-decreasing in [0, co). The integrals are nor-
mally interpreted in the Riemann—Stieltjes sense, but since it follows from
(1) that e 2 a(0+ ) — «(0) > 0 for all x >0, and hence that a(0+ ) = x(0),
we may assume that a(f) is right-continuous on [0, c0) and interpret all

integrals involving du(¢) in the Lebesgue—Stieltjes sense as follows: For 0 <
a<b,

(4

F do(t) := J( 5 de(t)=a(b+)—ala+)=a(h)—a(a)

and

[ foaw=] s,

ab]

the integrals over (a, b] being Lebesgue—Stieltjes integrals. Further

[7 70y datey = im [ fte) o)

whenever the limit exists.

3. PrOOF OF THEOREM A

Suppose that x >0 and define
flayr= Y wuge~%
n=1
It follows from (2) that, for § >0,

© o ©

Z u e—unxuéin=J Z une—inx”ct—é}m dCC(I)
n

n=1 0

n=1

=J0m F(x"et + 8) do(t), (3)

the inversion being justified because the series

o0
— Anxer — 84,
z un e T n

is uniformly convergent for 1> 0 (see [6, p. 76]) and [ du(z) = 1.
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Further, the hypotheses of Theorem A imply that f(¢) is bounded on
(0, o0). Letting 6 -0+ in (3), we obtain, by the Lebesgue—Stieltjes
theorem on dominated convergence, that

5 uis W—j F(xer) dar),

n=1
and hence that

3 u,,e*ﬂ»ujmzda(x)ﬂ as x=0+. [

0

n=1

4. ProofF oF THEOREM D

Suppose that x>0 and define

o0 a0
= 5 a,s,e W)s= ), dy et

n=1 n=1
o0
— N — inx
= ¥ Baf.B %,
n=1

It follows from (2) that

b= 3 e datn) = [ o(xer) da), (4)

n=1

the inversion of summation and integration in (4) being justified because
all the terms involved are positive. Next, it follows from (2) that, for § >0,

Z a,s, e 5/,17J Z ansne”"“m’ Sin du(t)

n=1 n=1

oo
= [ g (x4 8) du(1), (5)
Y0
the inversion being justified in this case because the series

3 1,
— Al — 84
Z ansne AnXx An

n=1

is uniformly convergent for >0 (see [6, p. 76]) and L‘f’ doe(t) = 1.

e
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Further, the hypotheses of Theorem D imply that, for fixed positive x
and all positive ¢ and 8, [¢,(x"1+ 8)| < M(x"*t + ) + M < Mp(x"t) +
M, where M is a positive number independent of ¢ and §. Letting 6 — 0+
in (5), we obtain, by the Lebesgue-Stieltjes theorem on dominated con-
vergence, that

= f:’ ¢,(x 1) da2). (6)
It follows that
Vo) _ o _80)
it qu )o(t) da(x~"<t),  where (1) : g

Suppose without loss of generality that /=0, i.e., that ¢(¢) -0 as 1 — 0+.
Since > a,=c0, we have that (x)—> o0 as x—0+. Further,
¥ a,s,e”* is uniformly convergent for t>d >0, so that |ps(2)] < M
for t>5>0, where M is a positive number independent of ¢. It follows
from (4) and (6) that

¥o(x)
b(x)

_lnnsupd/( U ¢(1) o(t) da(x Y1) +j @(1) do(x~1et)

lim sup
x—=0+

< sup la(f)|+1imsup%f: da(?)

O0<r<éd x—= 0+

= sup |a(z})] =0 as 0—-0+,

O<t<od

and hence that  (x)/(x)>0as x—>0+. |
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