Tauberian theorems concerning Laplace transforms and Dirichlet series

Ву

DAVID BORWEIN*)

1. Introduction. Suppose throughout that all functions and sequences are real, that A(x) is a non-decreasing, right-continuous and unbounded function on $[0, \infty)$ with $A(0) \ge 0$, and that s(x) is a locally bounded function, measurable on $(0, \infty)$ with respect to the Lebesgue-Stieltjes measure induced by A(x). Let

$$a(x) := \int_{0}^{\infty} e^{-vx} dA(v), \quad t(x) := \frac{1}{A(x)} \int_{0}^{x} s(v) dA(v)$$

and

$$\sigma(x) := \frac{1}{a(x)} \int_0^\infty s(v) e^{-vx} dA(v).$$

We suppose that the Laplace transform a(x) is finite for all x > 0. The integrals are to be interpreted as follows: For $0 \le x < y$,

$$\int_{x}^{y} dA(v) = \int_{(x,y]} dA(v) = A(y+) - A(x+) = A(y) - A(x),$$

and

$$\int_{x}^{y} s(v) e^{-vx} dA(v) = \int_{(x,y]} s(v) e^{-vx} dA(v),$$

the integrals over (x, y] being Lebesgue-Stieltjes integrals. Further

$$\int_{x}^{\infty} s(v) e^{-vx} dA(v) := \lim_{y \to \infty} \int_{x}^{y} s(v) e^{-vx} dA(v)$$

whenever the limit exists. It is easy to prove that $a(x) \to \infty$ as $x \to 0+$; and that if $s(x) \to s$ as $x \to \infty$, then $\sigma(x) \to s$ as $x \to 0+$. The primary object of this paper is to

^{*)} This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

prove the following Tauberian converse of the latter result:

Theorem 1. Suppose that

(1)
$$\frac{A(y)}{A(x)} \to 1 \quad \text{when} \quad \frac{y}{x} \to 1, \ y > x \to \infty,$$

(2)
$$\liminf \{s(y) - s(x)\} \ge 0 \quad \text{when} \quad \frac{A(y)}{A(x)} \to 1, \ y > x \to \infty,$$

and that $\sigma(x) \to s$ as $x \to 0+$. Then $s(x) \to s$ as $x \to \infty$.

In Sect. 4 we specialize this result to obtain a Tauberian theorem (Theorem 6) for the Dirichlet series summability method which generalizes a result due to Tietz [7, Satz 3.9] on the power series method. In Sect. 3 we prove the following ancillary (but independently interesting) Tauberian theorems:

Theorem 2. Suppose that (2) holds, that

(3)
$$\frac{A(x+1)}{A(x)} \to 1 \text{ as } x \to \infty,$$

(4)
$$\frac{A(2x)}{A(x)} = O(1) \text{ as } x \to \infty,$$

and that $\sigma(x) = O(1)$ as $x \to 0+$. Then s(x) = O(1) for $x \ge 0$.

Theorem 2 generalizes a result due to Tietz [7, Satz 3.6].

Theorem 3. Suppose that (1) holds, that s(x) > -H for $x \ge 0$, where H is a constant, and that $\sigma(x) \to s$ as $x \to 0+$. Then $t(x) \to s$ as $x \to \infty$.

In Sect. 4 we specialize Theorem 3 to obtain a Tauberian theorem (Theorem 7) for the Dirichlet series summability method which generalizes a result due to Tietz and Trautner [8, Korollar 4.2] on the power series method.

Theorem 4. Suppose that (1) and (2) hold, and that $\sigma(x) \to s$ as $x \to 0+$. Then $t(x) \to s$ as $x \to \infty$.

Since (1) implies (3) and, by Lemma 3 (below), also implies (4), Theorem 4 is an immediate consequence of Theorems 2 and 3.

Theorem 5. Suppose that (2) and (3) hold, and that $t(x) \to s$ as $x \to \infty$. Then $s(x) \to s$ as $x \to \infty$.

Since (1) implies (3), Theorem 1 follows from Theorems 4 and 5. We proceed now to establish Theorems 2, 3 and 5.

353

2. Preliminary results.

Lemma 1. Let

$$K(u,v):=\frac{e^{-v/u}}{a(1/u)}.$$

Suppose that

(5) $\phi(x)$ is a non-decreasing function on $[0, \infty)$ such that

$$\phi(x) \to \infty$$
 and $\phi(x) - \phi(x-1) \to 0$ as $x \to \infty$;

(6)
$$\int_{0}^{x} K(u, v) dA(v) \rightarrow 0 \quad \text{when} \quad \phi(u) - \phi(x) \rightarrow \infty, \ u > x \rightarrow \infty;$$

(7)
$$\int_{x}^{\infty} K(u, v) \{ \phi(v) - \phi(x) \} dA(v) \to 0 \quad \text{when} \quad \phi(x) - \phi(u) \to \infty, \ x > u \to \infty;$$

and that there are positive constants α and β such that

(8)
$$s(y) - s(x) > -\alpha \{\phi(y) - \phi(x)\} - \beta \text{ for } y > x > 0.$$

Then $\sigma(x) = O(1)$ as $x \to 0 + implies s(x) = O(1)$ for $x \ge 0$.

Note that $\int_{0}^{\infty} K(u, v) s(v) dA(v) = \sigma(1/u)$. The lemma is a variant of a result originally given by Vijayaraghavan [9] and can be proved along the lines of the proof of Theorem 238 in [4]. (See also the proofs of [3, Theorem 3] and [6, Lemma 1].)

Lemma 2. Suppose that (5) holds and that

$$\lim\inf\{s(y)-s(x)\}\geq 0\quad\text{when}\quad\phi(y)-\phi(x)\to 0,\ y>x\to\infty.$$

Then (8) holds.

Proof. (Cf. the proof of [3, Lemma 6].) By the second hypothesis, there are positive numbers c and δ such that s(y) - s(x) > -1 whenever $y > x \ge c$ and $\phi(y) - \phi(x) < 2\delta$. Furthermore, by (5), c can be chosen so large that $\phi(x+) - \phi(x-) < \delta$ when $x \ge c$.

Suppose first that $y > x \ge c$. Define an increasing sequence $\{x_n\}$ such that $x_0 = x$ and $\delta \le \phi(x_n) - \phi(x_{n-1}) < 2\delta$ for $n = 1, 2, \ldots$ Since $\phi(x_n) \ge \phi(x_0) + n\delta$ we have that $x_n \to \infty$. Hence there is a positive integer m for which $x_m \le y < x_{m+1}$. Therefore

$$s(y) - s(x) = \sum_{n=1}^{m} \left\{ s(x_n) - s(x_{n-1}) \right\} + s(y) - s(x_m) > -m - 1.$$

Since $m\delta \leq \phi(x_m) - \phi(x_0) \leq \phi(x) - \phi(y)$, it follows that

$$s(y) - s(x) > -\frac{1}{\delta} \{ \phi(y) - \phi(x) \} - 1 \text{ when } y > x \ge c.$$

If $c \ge y > x > 0$, then, because s(x) is locally bounded, there is a positive constant M such that s(y) - s(x) > -M. Finally, if y > c > x > 0, then

$$s(y) - s(x) = s(y) - s(c) + s(c) - s(x)$$

$$> -\frac{1}{\delta} \{ \phi(y) - \phi(c) \} - 1 - M \ge -\frac{1}{\delta} \{ \phi(y) - \phi(x) \} - 1 - M.$$

Consequently (8) holds with $\alpha = 1/\delta$ and $\beta = M + 1$.

Lemma 3. If (1) holds, then (4) holds.

Proof. If (1) holds, then

$$\log \frac{1}{A(y)} - \log \frac{1}{A(x)} \to 0$$
 when $\frac{y}{x} \to 1$, $y > x \to \infty$,

and it follows [4, p. 125] that there are positive constants H, x_0 such that

$$\log \frac{1}{A(2x)} - \log \frac{1}{A(x)} > -H \quad \text{for} \quad x > x_0.$$

This implies (4).

Vol. 53, 1989

Lemma 4. Suppose that (4) holds. Then

(i)
$$\frac{a(x)}{a(2x)} = O(1)$$
 as $x \to 0+$, and

(ii)
$$\frac{a(1/x)}{A(x)} = O(1)$$
 as $x \to \infty$.

Proof. Let x > 0, Then, for $x > \varepsilon > 0$, y > 0,

$$\{A(y) - A(0)\}\ e^{-yx} \le e^{-y\varepsilon} \int_0^y e^{-v(x-\varepsilon)} dA(v) \le e^{-y\varepsilon} a(x-\varepsilon) \to 0 \text{ as } y \to \infty.$$

Hence, as $y \to \infty$,

$$\int_{0}^{y} e^{-vx} dA(v) = A(y) e^{-yx} - A(0) + x \int_{0}^{y} A(v) e^{-vx} dv$$
$$\to x \int_{0}^{\infty} A(v) e^{-vx} dv - A(0).$$

Thus

$$a(x) + A(0) = x \int_{0}^{\infty} A(v) e^{-vx} dv = 2x \int_{0}^{\infty} A(2v) e^{-2vx} dv$$

$$\leq Hx \int_{0}^{\infty} A(v) e^{-2vx} dv = H \{a(2x) + A(0)\},$$

by (4), H being a positive constant. Since $a(2x) \to \infty$ as $x \to 0+$, (i) follows.

Vol. 53, 1989

Next, by (i), there is a positive constant K such that $a(x) \le K a(2x)$ for all x > 0. Now choose c > 0 so that $b := K e^{-c/2} < 1$. Then

$$a(1/x) = \int_{0}^{cx} e^{-v/x} dA(v) + \int_{cx}^{\infty} e^{-v/2x} e^{-v/2x} dA(v)$$

$$\leq A(cx) + e^{-c/2} \int_{cx}^{\infty} e^{-v/2x} dA(v) \leq A(cx) + e^{-c/2} a(1/2x)$$

$$\leq A(cx) + K e^{-c/2} a(1/x) = A(cx) + b a(1/x).$$

Hence, by (4),

$$\frac{a(1/x)}{A(x)} \le \frac{A(cx)}{A(x)} \cdot \frac{1}{1-b} = O(1) \quad \text{as } x \to \infty. \quad \Box$$

3. Proofs of Theorems 2, 3 and 5.

Proof of Theorem 2. (Cf. the proof of [7, Satz 3.6].) Let $x_0 \ge 0$ be such that $A(x_0) \ge e$ and take

$$\phi(x) := \log A(x)$$
 for $x \ge x_0$, $\phi(x) := 1$ for $x < x_0$.

Then ϕ satisfies (5), and

(9)
$$\phi(u) - \phi(x) \to \infty \text{ implies } \frac{A(x)}{A(u)} \to 0.$$

Also, for u > 0,

$$e a(1/u) > \int_{0}^{u} e^{(u-v)/u} dA(v) \ge A(u) - A(0),$$

and so, since $a(1/u) \to \infty$ as $u \to \infty$,

(10)
$$\frac{A(u)}{a(1/u)} = O(1) \text{ as } u \to \infty.$$

Hence, for $u > x > x_0$,

$$\int_{0}^{x} K(u, v) dA(v) = \frac{1}{a(1/u)} \int_{0}^{x} e^{-v/u} dA(v)$$

$$\leq \frac{A(x)}{a(1/u)} = \frac{A(x)}{A(u)} \frac{A(u)}{a(1/u)} \to 0$$

when

$$\phi(u) - \phi(x) \to \infty, \ u > x \to \infty,$$

by (9) and (10). Thus (5) holds.

Next

(11)
$$\phi(x) - \phi(u) \to \infty \text{ implies } \frac{A(x)}{A(u)} \to \infty.$$

It follows from (4) and (11) that

(12)
$$\phi(x) - \phi(u) \to \infty \text{ implies } \frac{x}{u} \to \infty.$$

Suppose now that $\phi(x) - \phi(u) \to \infty$ ($x > u \to \infty$). By (12), there is an $x_1 \ge x_0$ such that x > 2u for $x \ge x_1$. Therefore, for $x \ge x_1$,

$$\int_{x}^{\infty} K(u, v) \{\phi(v) - \phi(x)\} dA(v) = \frac{1}{a(1/u)} \int_{x}^{\infty} e^{-v/u} \log \frac{A(v)}{A(x)} dA(v)$$

$$\leq \frac{1}{a(1/u)A(x)} \int_{x}^{\infty} e^{-v/u} \{A(v) - A(x)\} dA(v)$$

$$= \frac{1}{a(1/u)A(x)} \int_{x}^{\infty} e^{-v/u} dA(v) \int_{x}^{v} dA(t)$$

$$= \frac{1}{a(1/u)A(x)} \int_{x}^{\infty} e^{-t/u} dA(t) \int_{t}^{\infty} e^{-(v-t)/u} dA(v)$$

$$\leq \frac{1}{a(1/u)A(x)} \int_{x}^{\infty} e^{-t/u} dA(t) \int_{t}^{\infty} e^{-(v-t)/x} dA(v)$$

$$\leq \frac{a(1/x)}{a(1/u)A(x)} \int_{x}^{\infty} e^{-t/u} e^{t/x} dA(t)$$

$$= \frac{a(1/x)}{a(1/u)A(x)} \int_{x}^{\infty} e^{-t/2u} e^{-t(x-2u)/2xu} dA(t)$$

$$\leq \frac{a(1/x)}{a(1/u)} \frac{a(1/2u)}{a(1/u)} e^{1-x/2u} \to 0$$

when

$$\phi(x) - \phi(u) \to \infty, x > u \to \infty,$$

by (12) and Lemmas 3 and 4. Therefore (7) holds; and, by Lemma 2, (2) implies (8). The desired conclusion is now a consequence of Lemma 1.

Proof of Theorem 3. Suppose without loss of generality that H = 0, i.e., s(x) > 0 for $x \ge 0$. Let

$$B(x) := \int_{0}^{x} s(v) dA(v).$$

Vol. 53, 1989 Tauberian theorems

359

Then, since s(x) is locally bounded, B(x) is non-decreasing and right-continuous on $[0, \infty)$. Further, for x > 0,

$$a(x)\sigma(x) = \int_{0}^{\infty} e^{-vx} s(v) dA(v) = \int_{0}^{\infty} e^{-vx} dB(v),$$

and so, since $\sigma(x) \to s$ as $x \to 0+$,

(13)
$$\int_{0}^{\infty} e^{-vx} dB(v) \sim s \int_{0}^{\infty} e^{-vx} dA(v) \quad \text{as } x \to 0+.$$

Since the function A satisfies (1) and $A(x) \to \infty$ as $x \to \infty$, it follows from (13), by a theorem due to Korenblum [5, Theorem 2], that

$$t(x) = \frac{B(x)}{A(x)} \to s \text{ as } x \to \infty.$$

Proof of Theorem 5. Suppose without loss of generality that s=0, i.e. $t(x) \to 0$ as $x \to \infty$. Let $\varepsilon > 0$. Then, by (2), there are positive numbers x_0 , δ such that

$$s(y) - s(x) > -\varepsilon$$
 when $\frac{A(y)}{A(x)} < 1 + 2\delta$ and $y > x > x_0$.

Consequently if x, y satisfy these conditions

$$\{s(x) - \varepsilon\} \{A(y) - A(x)\} \le \int_{x}^{y} s(v) \, dA(v) = t(y) \, A(y) - t(x) \, A(x)$$

$$\le \{s(y) + \varepsilon\} \{A(y) - A(x)\},$$

and hence

(14)
$$s(x) - \varepsilon \le \frac{t(y) A(y) - t(x) A(x)}{A(y) - A(x)}$$
$$= t(y) + \frac{t(y) - t(x)}{\{A(y)/A(x)\} - 1} \le s(y) + \varepsilon.$$

Since $A(x) \to \infty$ as $x \to \infty$ and (3) holds, there is an $x_1 > x_0$ such that for every $x > x_1$ there is a y > x satisfying

(15)
$$1 + \delta < \frac{A(y)}{A(x)} < 1 + 2\delta.$$

It follows on letting $x \to \infty$ in (14) that

$$\limsup_{x\to\infty} s(x) \le \varepsilon.$$

Likewise, there is a $y_1 > x_0$ such that for every $y > y_1$ there is an x satisfying $x_0 < x < y$ and (15). Hence, letting $y \to \infty$ in (14), we get

$$\lim_{y \to \infty} \inf s(y) \ge -\varepsilon.$$

Therefore $s(x) \to 0$ as $x \to \infty$.

4. Specializations. Now suppose that $\lambda := \{\lambda_n\}$ is a strictly increasing unbounded sequence with $\lambda_1 > 0$, that $a := \{a_n\}$ is a sequence of non-negative numbers with $a_1 > 0$, and that $\{s_n\}$ is a sequence of real numbers. Let

$$A_n := \sum_{k=1}^n a_k \to \infty,$$

and let A(x) := s(x) := 0 for $x < \lambda_1$,

$$A(x) := A_n$$
 and $s(x) := s_n$ for $\lambda_n \le x < \lambda_{n+1}$, $n = 1, 2, \dots$

Then, for x > 0,

$$a(x) = \int_{0}^{\infty} e^{-vx} dA(v) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n x},$$

$$\sigma(x) = \frac{1}{a(x)} \int_{0}^{\infty} s(v) e^{-vx} dA(v) = \frac{1}{a(x)} \sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x},$$

$$t(x) = \frac{1}{A(x)} \int_{0}^{x} s(v) dA(v);$$

and

$$A(\lambda_n) = A_n$$
, $s(\lambda_n) = s_n$, $t_n := \frac{1}{A_n} \sum_{k=1}^n a_k s_k = t(\lambda_n)$.

As before we assume that $a(x) < \infty$ for all x > 0, i.e., that the Dirichlet series a(x) is convergent for all x > 0. The weighted mean summability method M_a and the Dirichlet series method $D_{\lambda,a}$ (see [2]) are defined as follows:

$$s_n \to s(M_a)$$
 if $t_n \to s$;
 $s_n \to s(D_{1,a})$ if $\sigma(x) \to s$ as $x \to 0+$.

When $\lambda := n$ the method $D_{\lambda,a}$ reduces to the power series method J_a (as defined in [1] for example). Since $A_n \to \infty$ both methods are regular (i.e., $s_n \to s$ implies $s_n \to s(M_a)$ and

Vol. 53, 1989

 $s_n \to s(D_{\lambda,a})$). Theorem 1 specializes to the following Tauberian theorem, the case $\lambda_n := n$ of which has been proved by Tietz [7, Satz 3.9]:

Theorem 6. Suppose that

$$(16) \lambda_{n+1} \sim \lambda_n$$

(17)
$$\frac{A_m}{A_n} \to 1 \quad \text{when} \quad \frac{\lambda_m}{\lambda_n} \to 1, \ m > n \to \infty,$$

(18)
$$\lim\inf (s_m - s_n) \ge 0 \quad \text{when} \quad \frac{A_m}{A_n} \to 1, m > n \to \infty,$$

and that $s_n \to s(D_{\lambda,a})$. Then $s_n \to s$.

In order to prove this theorem we require another lemma.

Lemma 5. Suppose that (16) holds. Then

- (i) (1) is equivalent to (17);
- (ii) (2) implies (18);
- (iii) (18) and

$$(19) A_{n+1} \sim A_n$$

imply (2).

Proof. Part (i). That (1) implies (17) is immediate. Suppose therefore that (17) holds. Assign $\varepsilon > 0$. Then there are positive numbers N, δ such that

$$\frac{A_m}{A_n} < 1 + \varepsilon$$
 when $\frac{\lambda_m}{\lambda_n} < 1 + 2\delta$ and $m \ge n \ge N$.

Now choose a positive integer M > N such that

$$\frac{\lambda_{n+1}}{\lambda_n} < \frac{1+2\,\delta}{1+\delta} \quad \text{for } n \ge M.$$

Let $y > x > \lambda_M$, $\frac{y}{x} < 1 + \delta$. Then there are integers m, n such that

$$\lambda_{n+1} > x \ge \lambda_n, \quad \lambda_{m+1} > y \ge \lambda_m.$$

Hence $m \ge n \ge M$,

$$\frac{\lambda_m}{\lambda_n} < \frac{y}{x} \frac{\lambda_{n+1}}{\lambda_n} < (1+\delta) \frac{1+2\delta}{1+\delta} = 1+2\delta;$$

and therefore

$$\frac{A(y)}{A(x)} = \frac{A_m}{A_n} < 1 + \varepsilon.$$

Consequently (1) holds, and the proof of (i) is complete.

Part (ii). This is immediate.

Part (iii). Suppose that (17), (18) and (19) hold. Assign $\varepsilon > 0$. Then there are positive numbers N, δ such that

$$s_m - s_n > -\varepsilon$$
 when $\frac{A_m}{A_n} < 1 + 2\delta$ and $m \ge n \ge N$.

Now choose a positive integer M > N such that

$$\frac{A_{n+1}}{A_n} < \frac{1+2\,\delta}{1+\delta} \quad \text{for } n \ge M.$$

Let $y > x > \lambda_M$, $\frac{A(y)}{A(x)} < 1 + \delta$. Then there are integers m, n such that

$$A_{n+1} > A(x) \ge A_n, \quad A_{m+1} > A(y) \ge A_m.$$

Hence $m \ge n \ge M$.

$$\frac{A_m}{A_n} < \frac{A(y)}{A(x)} \frac{A_{n+1}}{A_n} < (1+\delta) \frac{1+2\delta}{1+\delta} = 1+2\delta;$$

and therefore $s(y) - s(x) = s_m - s_n > -\varepsilon$. Thus (2) holds.

Proof of Theorem 6. Since (16) and (17) imply (19), it follows, by Lemma 5, that (16), (17) and (18) imply (1) and (2). Theorem 6 is thus a consequence of Theorem 1.

In view of Lemma 5 (i), we can also specialize Theorem 3 as follows:

Theorem 7. If (16) and (17) holds, $s_n > -H$ for n = 1, 2, ... where H is a constant, and $s_n \to s(D_{\lambda,a})$, then $s_n \to s(M_a)$.

A similar theorem with a somewhat stronger hypothesis in place of (17) but without hypothesis (16) appears as Theorem 2 in [2]. The case $\lambda_n := n$ of Theorem 7 was proved by Tietz and Trautner [8, Korollar 4.2]. Theorems 6 and 7 evidently remain valid with $\lambda_1 = 0$.

References

- [1] D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability. Canad. Math. Bull. 24, 309-316 (1981).
- [2] D. Borwein, Tauberian and other theorems concerning Dirichlet's series with non-negative coefficients. Math. Proc. Cambridge Philos. Soc. 102, 517-532 (1987).
- [3] D. Borwein and B. Watson, Tauberian theorems on Abel-type summability methods. J. Reine Angew. Math. 298, 1-7 (1978).
- [4] G. H. HARDY, Divergent Series. Oxford 1949.
- [5] B. H. KORENBLUM, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence. Dok. Akad. Nauk. SSSR (N. S.) 104, 173-176 (1955).
- [6] M. S. RANGACHARI, Tauberian oscillation theorems for the summability methods of the Hardy family. Indian J. Math. 22, 225-243 (1980).

- [7] H. Tietz, Schmidtsche Umkehrbedingungen für Potenzreihenverfahren. To appear.
- [8] H. TIETZ and R. TRAUTNER, Tauber-Sätze für Potenzreihenverfahren. Arch. Math. 50, 164–174 (1988).
- [9] T. VIJAYARAGHAVAN, A Tauberian theorem. J. London Math. Soc. 1, 113-120 (1926).

Eingegangen am 3. 3. 1988

Anschrift des Autors:

David Borwein Department of Mathematics The University of Western Ontario London, Ontario, Canada N6A 5B7