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Tauberian theorems concerning Laplace transforms and
Dirichlet series

By

DaviD BORWEIN *)

1. Introduction. Suppose throughout that all functions and sequences are real, that A (x)
is a non-decreasing, right-continuous and unbounded function on [0, co) with A(0) = 0,
and that s(x) is a locally bounded function, measurable on (0, o) with respect to the
Lebesgue-Stieltjes measure induced by A4 (x). Let

L

T gs(v) dA (v)

a(x):= ofe_""dA(v), t(x):=
and

a0

a(x):= %x) g s(wye "™ dA(v).

We suppose that the Laplace transform a(x) is finite for all x > 0. The integrals are to be
interpreted as follows: For 0 = x < y,

j"dA(u j" dAw) =A(y+)—Ax+)=A(y) — A(x),
and

fs(v)e_”" dAw)= | s)e " dA(v),

(x,y]
the integrals over (x, y] being Lebesgue-Stieltjes integrals. Further

]9 sv)ye ™ dA(@v):= lim fs(v) e "™ dA(v)

whenever the limit exists. It is easy to prove that a(x) - oo as x — 0 +; and that if
5(x) = s as x — o0, then ¢(x) — s as x = 0+. The primary object of this paper is to

*) This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.
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prove the following Tauberian converse of the latter result:

Theorem 1. Suppose that

1) %%1 when i—»l,y>x—>oo,
2 liminf{s(y) —s(x)} 20 when %%],y>x—>o®,

and that g(x) > s as x - 0+. Then s(x) > s as x — .

In Sect. 4 we specialize this result to obtain a Tauberian theorem (Theorem 6) for the
Dirichlet series summability method which generalizes a result due to Tietz [7, Satz 3.9]
on the power series method. In Sect. 3 we prove the following ancillary (but independent-
ly interesting) Tauberian theorems:

Theorem 2. Suppose that (2) holds, that

3) weiasxaoo,

A2x)
A(x)
and that o(x) = 0(1) as x > 0 +. Then s(x) = O(1) for x = 0.

4

=0(1) as x - 0,

Theorem 2 generalizes a result due to Tietz [7, Satz 3.6].

Theorem 3. Suppose that (1) holds, that s(x) > — H for x = 0, where H is a constant, and
that o(x) > s as x > 0+. Then (x) — s as x — 0.

In Sect. 4 we specialize Theorem 3 to obtain a Tauberian theorem (Theorem 7) for the
Dirichlet series summability method which generalizes a result due to Tietz and Trautner
[8, Korollar 4.2] on the power series method.

Theorem 4. Suppose that (1) and (2) hold, and that 6 (x) — sas x = 0+. Then t(x) — s
as x — oo,

Since (1) implies (3) and, by Lemma 3 (below), also implies (4), Theorem 4 is an

immediate consequence of Theorems 2 and 3.

Theorem 5. Suppose that (2) and (3) hold, and that t (x) — s as x — 0. Then s(x) - s as
X — o0,

Since (1) implies (3), Theorem 1 follows from Theorems 4 and 5.
We proceed now to establish Theorems 2, 3 and 5.
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2. Preliminary results.

Lemma 1. Let
e—v/u
Ca(t/w’

K(u,v):

Suppose that

(5 ¢ (x) is a non-decreasing function on [0, 00) such that
p(x) > o0 and d(x)—¢(x—1)—-0 as x— co;
(6) fK(u,v)dA(u)-»O when ¢ U) — ¢(x) > o0, u>x — 00;
0
0 T K 0) {60)—d()) dAW) >0 when ¢(x) — d) = w0, x> u - oo

and that there are positive constants o and f such that

@) s —s®>—a{p() -} —B for y>x>0.
Then o (x) = 0(1) as x - 0+ implies s(x) = O(1) for x = 0.

o0
Note that | K(u, v)s(v) d4 (v) = ¢ (1/u). The lemma is a variant of a result originally
0
given by Vijayaraghavan [9] and can be proved along the lines of the proof of Theo-
rem 238 in [4]. (See also the proofs of [3, Theorem 3] and [6, Lemma 1].)

Lemma 2. Suppose that (5) holds and that
liminf {s(y) —s(x)} =20 when ¢(y)—¢(x) =0, y>x > 0.
Then (8) holds.

Proof. (Cf the proof of [3, Lemma 6].) By the second hypothesis, there are positive
numbers ¢ and § such that s(y) — s(x) > — 1 whenever y > x = cand ¢ (y) — ¢ (x) < 24.
Furthermore, by (5), ¢ can be chosen so large that ¢ (x +) — ¢(x —) < 6 when x = c.

Suppose first that y > x = ¢. Define an increasing sequence {x,} such that x, = x and
L dp(x) —p(x,-1) <28 for n=1,2,.... Since ¢(x,) = ¢(x,) +nd we have that
x, — co. Hence there is a positive integer m for which x,, £y < x,,,,. Therefore

™M=

s(y) —s(x) =

n

Since md = ¢ (x,,) — P (xg) < ¢ (x) — ¢ (), it follows that

{S(xn) - S(xnfl)} + S(y) _S(xm) >—-—m—1.
1

50~ 59 > —%{m} —¢(X)}—1 when y>x2c.
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If ¢ =z y > x > 0, then, because s(x) is locally bounded, there is a positive constant M
such that s(y) — s(x) > — M. Finally, if y > ¢ > x > 0, then

$0) = 569 = 5(3) — 5(0) + 5(0) — 5%

> = L0 = 6@ —1 - Mz~ {P() —p()} — 1~ M.
Consequently (8) holds with a = 1/6 and f= M + 1.  [J
Lemma 3. If (1) holds, then (4) holds.

Proof. If (1) holds, then

1 y
log———log—— >0 when = -1, y>x— 00,
A(y) Al(x) x

and it follows [4, p. 125] that there are positive constants H, x, such that

log 1

>—H for x>x,.

1 1
A2x AR

This implies (4). [

Lemma 4. Suppose that (4) holds. Then

(1) aa((zxi) =0(1) as x >0+, and
(ii) %l(/xi}}z 0(1) as x — oo.

Proof. Let x > 0, Then, for x > &> 0, y > 0,
¥y
A — A0} e ™ <e *[e "™ PDdA@w) < e a(x —&) -0 as y - 0.
0

Hence, as y — o0,

e dAW) = A(y) e — AQ) + x | A(v) e dv

0

Oty

x| A e dv— A(0).

0
Thus

G(X) EiF: A(U) = x I A(U)e_vx do =2x j' A(Zi‘)) e~ 2% dp
4 0
<Hx [ A@) e > dv=H{a2x)+ A(0)},
(V]
by (4), H being a positive constant. Since a(2x) — oo as x — 0+, (i) follows.

23%
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Next, by (i), there is a positive constant K such that a(x) = K a(2x) for all x > 0. Now
choose ¢ > 0 so that b:= Ke™* < 1. Then

alt) = | 7 dAw) + [ e e AW

< Afcx)+ e 2 | e T dAW) £ A(ex) + e a(1/2)

< A(ex) + Ke % a(1/x) = A(cx) + ba(l/x).
Hence, by (4),

3. Proofs of Theorems 2, 3 and 5.

Proof of Theorem 2. (Cf. the proof of [7, Satz 3.6].) Let x, = 0 be such that
A(xy) = e and take

¢ (x):=log A(x) for x = x5, ¢ (x):=1 for x < x,.
Then ¢ satisfies (5), and
) A(x)
9) ¢ (1) — ¢ (x) = oo implies i 0.
Also, for u >0,
a(lju) > [ e MdA(v) Z Aw) — A(0),

0

and so, since a(1/u) — o0 as u — o0,

Aw)
a(1/u)

Hence, for u > x > X,

(10) =0(1) as u — 0.

[ K (u,v) dA (o) = [ e dA (v)
1]

(1/ )0
A(x) _A(x) Au) N
a(l/u)  Au)a(l/u)

when

¢ () — ¢ (x) > 00, u>x > 0,

by (9) and (10). Thus (5) holds.
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Next
A
(11) ¢(x)—¢(u)—>ooimpliesﬂ—>oo
A(u)

It follows from (4) and (11) that
(12) ¢ (x) — ¢ () — oo implies > — oo .
u

Suppose now that ¢ (x) — ¢ (u) — oo (x > u — oo). By (12), there is an x,; = x, such that
x > 2u for x = x,. Therefore, for x = x,,

[ Ko {60~ (0} d0) = i )je*w"x g%dm
= JUWA® a(l/u)A ) :f ™ [Ae)~ AR} 446)
W [ e dA( vJIdA(r)
= ﬁ [ e ™da() j e™ @ % 44 (v)
S i Aw | ¢ A0
a(1/x)

= T —t/2u , —t{x— 2u)/2xu
2 AG) £ e e dA(b)

a(l/x)a(l/Zu)e]_mu
= AX) a(l/u)

-0

when
G(x)— ) » 00, x>u— 0,

by (12) and Lemmas 3 and 4. Therefore (7) holds; and, by Lemma 2, (2) implies (8).
The desired conclusion is now a consequence of Lemma 1. [

Proofof Theorem 3. Suppose without loss of generality that H = 0,1i.e,s(x) > 0
for x = 0. Let

B(x):= | s(v) dA ().

i)
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Then, since s(x) is locally bounded, B(x) is non-decreasing and right-continuous on
[0, o). Further, for x > 0,

a(x)o(x) = [ e *s(v)dA(v) = | e”* dB(v),
0 0
and so, since a(x) — s as x = 0+,
(13) [e ™ dBw)~s[e *dA() as x—->0+.
0 0

Since the function A satisfies (1) and A(x) — 0o as x — oo, it follows from (13), by a
theorem due to Korenblum [5, Theorem 2], that

B(x)

t(x)=———s5 as x—o0. [J

A(x)

Proof of Theorem 5. Suppose without loss of generality that s = 0,1.e.£(x) = 0
as x — 0. Let & > 0. Then, by (2), there are positive numbers x,, d such that

s(M—sx) > —¢ wheng%g<1+25 and y> x> Xg.
Consequently if x, y satisfy these conditions

{s(x) —e} {4(y) —A4()} £ TS(U) dA @) =t(y) A(y) — () A(x)
< {s() + & {4() — A},

and hence
() AG) — t() A
1) R TR T
TP bkl N

{AGVAG} —17

Since A (x) — oo as x — o0 and (3) holds, there is an x, > x, such that for every x > X,
there is a y > x satisfying

(15) 1+b<-ﬂ<1+25

A(x)

It follows on letting x — oo in (14) that

limsups(x) <e.

X oD
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Likewise, there is a y, > x, such that for every y > y, there is an x satisfying
Xo < x < y and (15). Hence, letting y — oo in (14), we get

liminfs(y) = —e.
y—+w

Therefore s(x) - 0as x - 0. [

4. Specializations. Now suppose that 1:= {1} is a strictly increasing unbounded
sequence with 4, > 0, that a:= {a,} is a sequence of non-negative numbers with a; > 0,
and that {s,} is a sequence of real numbers. Let

=2 @~
k=1
and let A(x):=s5(x):=0for x < 1,

A(x):=A, and s(x):=s, for L, =x<d,,;, n=12,....

Then, for x > 0,

n=1
_ 1 T vx dA _ 1 o —Anx
a(x)fﬁgs(v)e (v)—mnglansne !
1 x
t(x)=mgs(v)dA(v),
and
AG)= A 5D =5 ti= o 3 o= (i),

As before we assume that a(x) < oo for all x > 0, i.e., that the Dirichlet series a(x) is
convergent for all x > 0. The weighted mean summability method M, and the Dirichlet
series method D; , (see [2]) are defined as follows:

s,—>s(M) if ¢

n 8

s, = 8D, ) i o(x)>s as x -0+,

When 4:= n the method D, , reduces to the power series method J, (as defined in [1] for
example). Since 4, — oo both methods are regular (i.e., s, — s implies s, — s(M,) and
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s, — s(D; ,). Theorem 1 specializes to the following Tauberian theorem, the case 4,:=n
of which has been proved by Tietz [7, Satz 3.9]:

Theorem 6. Suppose that

(16) Aatr ™ Ay
m A‘m
(17) — =1 when ——>1, m>n-— oo,
AH A’ﬁ
A
(18) liminf(s, —s,) =0 when ——1,m>n— o,

n

and that s, — s(D, ). Then s, — s.

In order to prove this theorem we require another lemma.

Lemma 5. Suppose that (16) holds. Then

(i) (1) is equivalent to (17);
(i) (2) implies (18);
(iii) (18) and
(19) Ay ~ 4,

imply (2).
Proof. Part (i). That (1) implies (17) is immediate. Suppose therefore that (17)
holds. Assign & > 0. Then there are positive numbers N, 6 such that

%<1+8 wheni—’"<1+25 and m=znz=N.

" "

Now choose a positive integer M > N such that

Avy 1428
7.~ 1ia

for n=M.

n

Let y > x > Ay, L + &. Then there are integers m, n such that
X

)“n+1>xgln! R'm+1>y2;im

Hencem =2n= M,

Aoy . Pl 1426
L 146 —=1+24;
R E Gl

and therefore
A(y) A4,
——=-—"<1+4es.
A(x) A,

- Consequently (1) holds, and the proof of (i) is complete.
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Part (ii). This is immediate.

Part (iii). Suppose that (17), (18) and (19) hold. Assign & > 0. Then there are positive
numbers N, § such that

A
S — 8, > —& when f<1+25 and m=znz=N.

n

Now choose a positive integer M > N such that

A,,+1<1+25
A, 146

A(y)

Let y > x > Ay,—— <1 + 4. Then there are integers m, n such that

A(x)
An+1>A(x}2An> Am+1>A(y);Am'

for n=M.

Hencem=n= M,

4y AG) Ay, 1425
2 Aueg S0
=0

<
A, T Ax) A4,

n

=1+26;
and therefore s(y) — s(x) =s,, — s, > —e. Thus (2) holds. [OJ

Proofof Theorem 6. Since (16) and (17) imply (19), it follows, by Lemma 5, that
(16), (17) and (18} imply (1) and (2). Theorem 6 is thus a consequence of Theorem 1. [

In view of Lemma 5(i), we can also specialize Theorem 3 as follows:

Theorem 7. If (16) and (17) holds, s, > — H for n =1, 2, ... where H is a constant, and
s, = S(D, ), then s, — s(M,).

A similar theorem with a somewhat stronger hypothesis in place of (17) but without
hypothesis (16) appears as Theorem 2 in [2]. The case A,:= n of Theorem 7 was proved
by Tietz and Trautner [8, Korollar 4.2]. Theorems 6 and 7 evidently remain valid with
A, =0
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