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1. Introduction. In this note Abel-type summability methods (A,) are defined and
some of their properties investigated.
Let o = (n + /1)

n

and let {s,} be any sequence of numbers. If
(L-zM1 ¥ eps,2m
n=0
is convergent for all z in the open interval (0, 1) and tends to a finite limit s as z — 1
in (0, 1), we shall say that the sequence is A,-convergent to s and write s,, — s (A;). The
Ay method is the ordinary Abel method.
It will be convenient to use the notation
7 = ()2 3 chay ()"
Evidently s, — s(A,) if and only if the series is convergent for all ¥ > 0 and o, (y) > s
as y — o0,

2. Regularity and inclusion theorems. Suppose that A > —1 and that m is any
positive integer. Then
fUoteh == | 0 n
im [oy(y) | < lim (1+y)2 3 a8, (L) < sup |s, |,
Y—>o Y= n=m 1 + y n=m

whence s, - 0(A,) whenever s, — 0; it follows immediately that s, — s (A,) whenever
8y, — 8. We have thus proved

TuaeorEM 1. A, is regular for A > —1.
In order to obtain results about the relative strengths of different A, methodswe
shall use the following two lemmas:

LeMMA 1. For A > pu > —Ly>0,n=0,1,..., wehave

I'A+1) A _‘lfy =1 § utn e _71( y )n
Tt ) TA—p) ¥ |, W= tPrtemtn(1+1) dt = el(1+y)» i

Proof. Making the substitutions u = ¢/(1 +¢), & = y/(1+y), we get
J'?J (y —t)A—n-1 trtn(] 4 )-A-1-ngp — (1 —z)t+e—2 jm (z —u)A—s—Lyptndy
0 0
PA—p)T(p+1+mn)
= pAt — ) Hu—A
e Fnin
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from which the lemma follows.

Lemma 2. If A > p > -1,y > 0 and Zels, (1—%) s convergent for all ¢ > 0, then

6) 00) = oy egg |, =P

(ii) im |o,(y)| < Hm | oy(y)|.
Y—>w Yy—>n

Proof. 1t is easily verified that the convergence of ZeZs, (IL—l—t) for « = A and all

t > 0 implies its absolute convergence for all & and all ¢ > 0. This justifies the term by
term integration by means of which we can deduce (i) from Lemma 1.
To prove (ii) suppose that ¥ > w > 0. Then it follows from (i) that

T'A+1) e
|0-,u.(y)| émy(y-w) “ j t#IUA(t)ldt+§gBlO'A(t)|-
and hence that hm ]a'#(y = ap | o) |-

Result (ii) follows.
We deduce from Lemma 2 (ii) thatif A > g > —1and lim o,(y) = 0, then

Y0

lim o,(y) =

Y—>co
Consequently, for A > g > —1,
8, > 8 (A,) whenever s, s (A,).
We state this result concisely as follows:

THEOREM 2. A, € A for A >p> —1.
We next prove

TrEOREM 3. For any A > —1, there is a sequence which is A -convergent for every
W osuch that A > p > —1, but not A,-convergent.

Proof. Let {s,} be the sequence such that
1

(S (l—x)*"*lsinl— 0=z = 1).
0 ==L

ib4s

The power series is convergent for all z in (0, 1) but, since sin (1 — )~ oscillates when
x — 1in (0,1), {s,} is not A,-convergent.
For this sequence o,(y) = sin (1 +y) so that, for A > # > —1, ¥ > 0, we have by
Lemma 2 (i),
P{u+1) (A —p)

TA+1) oY) = y")‘f: (y —ty—+Lssin (1+1£) di

1
= f (1 —w)*—#Lyrgin (1 +yu)du,
0

which, by the Riemann-Lebesgue theorem, tends to zero as y —» co. Consequently
8, = 0(A,) for A > u > —1; and this completes the proof.
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In view of the above two theorems we may write
AcA, A>p> -1 (1)
the notation signifying that any sequence which is A,-convergent is also A -con-

vergent to the same limit, and that there is at least one A -convergent sequence which
is not A,-convergent.

3. Relative strengths of A, and Cesdro methods. We shall use the following lemma
which is due to Bosanquet ((2), Lemma 6):

Lemma 3. If k is a positive integer, p > —1, A > —1—p, and if {y,}, {s,} are
sequences such that (i) vy, = O(nd), (i) Aky, =0@**), (iii) s, = o(n?) (C, k), then

8, Yn = 0(m*+?) (C, k).
We have used here the notation |
Ayp = Alyy = Vo= Vnrp A, = BA™ Yy, (r=2,3,...).
and understand (iii) to mean
E eklg, = o(notk),

Suppose that & is a positive integer and
Sy =0(1) (C.k); (2)

and let A =y Z ekzlels,

where A > —1.
Since €2 = O(n*) and Ae? = —e271forallreal o, and, for f > — 1, T(f+ 1)n—Fel — 1,
we deduce from (2), by means of Lemma 3 with p = 0 and y,, = €;,, that
£, -0 ' (3)
Further it is well known that (2) implies that s, = O(n*). The power series e} s, 2™
is therefore convergent for all x in (0, 1), whence, for such =,

(1—z)r1 Z els, o = (1 —giEsl 2 o Z gla am
n=0 r=0 =0

= (L—a)+hH 3, At am, (4)
n=0
Since A, ., is regular, it follows from (3) and (4) that

We immediately deduce that s, = s (A,) whenever s, — s(C, k), that is, whenever

Further, it is familiar that (C,a) < (C,k) for £ > o > — 1. Consequently we have

TuroREM 4. (C,0) = A, fora > ST S
Remark. Tt can be shown by use of the theory of Hausdorff means that (2) and (3)
are equivalent forall & > —1, A+k >-1.
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4. Translativity of the A, methods. In this section we prove

THEOREM 5. A, ¢s translative for A > —1.
By this we mean that s, — s (A,) if and only if s, ., — s (A;).
We require

Levma 4. If A > —1 and a is real, and if {s,} is an A,-convergent sequence and
(n+a)u, =s, forn="0,1, ..., then u, > 0 (A,).
Proof. Let o
ba) = 3 chs,areat (|a| <1),
n=m
where m > |a|+1. Then (1—z)**1¢(z) tends to a finite limit as > 1 in (0, 1) and
¢(x) - Oasx — 0. Hence,for0 gz < 1,

o(x) = O{(1 —=)1},

and so (1—x)r 2 2‘ eru x“#(l*x”lx*ﬂf o(t)

n=m

= 0[(1 Z)\H af

(1—¢)—2-1 dt}
0
=0(l) asx—1in (0,1).
The lemma follows.
Proof of Theorem 5. Suppose that A > —1 and s,,—>s(4,). It is easily verified that,

foro0gz <1,

8

E;
Y ets, at =2 3 ersat+Ax T el —_an, 5
Z Cndu § nz i (5)
0 [re] @
z'Y els o= 2‘, g an—A Y e ", (6)
n=0 n=1 n=1 +)'~

Applying Lemma 4, we deduce from (5) that s, , - s (A,), and from (6) that
8pi1—>S (A,). The theorem follows.

5. Product of A, and Hausdorff methods. We recall the definition of the regular
Hausdorff summability method (H,):

Throughout this section, suppose that x(f) is a real function of bounded variation
in the interval [0, 1] such that y(0+) = x(0) = 0 and x(1) = 1, and let

n (y 1
b= 2 (0)s [ ra-tr—axo,
v=0 \V 0

If ,, — s we write s, - s (H,). The conditions on y() ensure the regularity of the

method (see (3), §11-8).
The product method (A, H,) is now defined as follows:

8, > 8 (A H,) ifandonlyif &, — s (A,).

The next lemma has been proved by A. Amir ((1), p. 376), the case A = 0 having
first been established by O. Szé4sz(4). The proof given below is considerably shorter
than that given by Amir.

D. BoRwWEIN 322

Levva 5. If A > —1 and Zeks,a" is convergent for 0 < x < 1, then, for y > 0,

n 1
49t 3 et (72) = [ omaxe.

Proof. Fory > 0,

2 e 5 () [ ru -t
n=0 (1+y)h+1+ﬂ nv=0 v) *Jo

1 = (yty Y=g
= dx“pzoeﬂs”(uy)mﬂ Ea()
(yty
f drx V 1+;)A+l+v7

all the inversions being justified since j | dx(t)| < oo, and, for 0 < ¢ < 1,9 > 0,
0

o L4 o0 v
A @y s ( y )
vggev ISPI (l-l-yt))'*l*" ‘*v;(}ev |Sv| 1+y H
which is finite and independent of {. The lemma follows.
If A > —1 and o,(t) tends to a finite limit s as ¢ - co then o,(¢) is continuous for

1
¢t > 0, and the conditions on x(f) are such thatf o (yt) dx(t) = s as y — o0 (see (3)
0
§11-18). Thus a consequence of Lemma 5 is
A cAH, (A>-—1). (7)

The case A = 0 of this result was proved by Szé4sz (4) and the general case by Amir (1).
The new result we shall prove is:

TurorEM 6. If x(f) is absolutely continuous in [0,1], x(1)—x(0) = 1, and A > — 1,
then A, = A, H,.

Proof. The sequence given in the proof of Theorem 3 is not A,-convergent. However,
in view of Lemma 5, it is A, H,-convergent to zero, since, for the sequence in question,
we have

1 1
j o2ty dxlt) = f sin (1+ ) X'(¢) d,
1] 0

which, by the Riemann—Lebesgue theorem, tends to zero as y — co. This together with
(7) yields the required result.
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