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Abstract

The paper is concerned with properties of the Dirichlet series a(zx) := X5, @, €

where {A,} is a strictly increasing unbounded sequence of real numbers with A, 2 0.
One of the main Tauberian results proved is that ifa, > 0,a, = 0 forn=2,3,...,a(x)
<owforall z>0, 4, :=a,+a,+...+a, 20, @, A, = (A=A A,), Gy A8, 2=
—H(A,.,—A,) 4, and T2, a,s,e** ~ sa(x) as >0+, then 7, a, 8, ~3sd, A
new summability method D, , based on the Dirichlet series a(x) is defined and its
relationship to the weighted mean method M, investigated.

—Ay T
3

1. Introduction

Suppose throughout that A:={A,} is a strictly increasing unbounded sequence of
real numbers with A, > 0, and that a:= {a,} is a sequence of real numbers. Let

n 0
A,:= X a, and a(@):= X a,eM"
k=1 n=1

The same system of notation will be used with letters other than a, 4. Except in §6
and §7, we shall suppose that

a,>0 and a,20 for =23, ..,

and that the Dirichlet series a(x) is convergent for all > 0. Let {s,} be a sequence
of real numbers,

o0
e
n=1

pom L3 3 o ——
n.—A’“c”lc:,ks&c an U(x)'—a(m)

—A, T

We shall be concerned with the weighted mean summability method M, and the
Dirichlet series method D, ,, the latter method being new. These methods are defined
as follows: '

5, > 8(M,) if t,—s;

8, = 8(D, ,) if o(z) exists for all z >0 and o(x) > sasz—0+.
When A, := n the method D, , reduces to the power series method J, (as defined

in [1] for example). It is familiar that the method M, is regular (i.e. s, — s(M,)
whenever s, — s) if and only if 4, »o0 (see [5], theorems 2 and 12), and, since
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a(x) — o0 a8 & — 0+ if and only if 4, >0 (see [5], theorem 27), it is easily proved
that D, , is also regular if and only if 4, — 0.

The primary purpose of this paper is to prove the following four theorems, the
latter three being Tauberian in character:
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TueorEeM 1. If A, >0 and s, — s(M,), then s, — s(D, ,).

TrEOREM 2. Let s, — 8(D, ,), let s, >—H for n=1, 2, ..., where H is a positive
constant, and let a(x) satisfy

lim 272 _ o 0 =2 .

lim =20 = %m for m=2 and m=3. (1)

Then s, — s(M,).
THEOREM 3. Suppose that A, ~ A, A, =0 and
ap Ay = 0((Ag4,—A,) 4,). 2)
Suppose also that s, — s(D, ,) and
an)‘nsﬂ 2 _H(/‘nﬁ-l—/\n)An! (3)
where H is a positive constant. Then s, — s(M ).

THEOREM 4. If a(z) satisfies (1), then
a(x) = 2 "L (i) Jor x>0,

where p = —log, o, 2 0 and L(x) is a function (defined for x > 0) satisfying

Ltx)

lim @

T =00

=1 forall t>0

2

and

1 i AP
A o e — n
n P<p+1)“(an) T+ 1) o)

With regard to condition (1), it should be noted that the condition

. a(2x)
lim — =1
. z—o0t+ M) @)
implies that
lim afmz) =1 for m=23, ...
20+ 0(T)

The special case A, := n of Theorem 1 is due to Ishiguro [6]; and the same case of
Theoret.n 2 to Borwein and Meir [2], and of Theorem 3 to Borwein [1]. Theorem 4
generalizes a theorem due to Hardy and Littlewood ([3], theorem D), which has in

place of condition (1) the stronger condition
a(x) ~ Az as x— 0+,

with 4 > 0 and p > 0. Theorem 4 is in fact a corollary of Karamata’s Tauberian
theorem and a known result about regularly varying functions (see [9], theorems 23
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and 18), and Theorem 2 can be deduced from Theorem 4. Our proofs of Theorems
2 and 4, however, are more direct and more elementary in that they do not involve
the extended continuity theorem for Laplace—Stieltjes transforms on which the proof
of Karamata’s theorem is based. We indicate the scope of Theorem 3 by means of two
examples at the end of §4. In §5 we express a slight extension of Theorem 2 in &
different, form. In §6 we show how to generate Dirichlet series a(x) that satisfy (1).
In §7 we show that Theorem 4 remains valid when the condition a, = 0 is relaxed.

2. Proof of Theorem 1
Suppose that > 0. Then, for 0 <e <z,

T
0K A, eM% et T a,e @0 g eMfa(x—e) >0 as n—00.
k=1

Now, by hypothesis, ¢, — s, and so

7 . on
Y aps,e =X (Apte—Ag_1te—1) e T (At = 0)
k=1 =1

=

-1
T Aty hE —e M) b, A e
k=1

2

o]
= 3 At (e T—e ) as n—00.

k=1
1 - —ARx —Ap41 2%
Consequently o(x) = —— B At (e —e n?),
() g-1
Since L E A (e—)-kx_e—/mﬂ) =1
a(x) =1 * ’

and,; for ki=1,.2; ...,

—— A, (e MT—eMen®) 50 as x>0+,

a(x)

it follows, by a standard result ([5], theorem 2), that

0<

ox)—>s as xz—-0+. |

3. Proofs of Theorems 2 and 4
We require the following known result ([9], theorem 1-8):

Lemma 1. If a(x) satisfies (1), then

lim alee) tr  for all

t>0,
-0+ a’(x)

where p = —log,o, = 0, and
a(x) = a*L G) for x>0,

Ltx)
L(x)

=1 forall t>0.

where lim

T=»C0
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Proof of Theorem 2. (Cf. the proof of theorem 1 in [1].) It f
Lemma 1, that [1].) ollows from (1), by
a(mz)  _
zo0+ B(T) =m? for m=1,2, ...

Further, form =0, 1, ...,
1

(m+1)7" = J " dx(t),

0

1
where x() = ——-—P(p)J:(_logu)pml du when p>0,
and, when p = 0, (t)={0 if 0g<t<l1,
1 if ¢=1.

Suppose without loss of generality that H = 0, i.e. that s, 20 forn=1, 2, ....

Define

1
" for e<a<1,

Plx):=

0 otherwise,
where 0 < ¢ < 1, and

1 =]
l,#(x) = @ k§1 a8 e_)‘”zgﬁ(e_""‘”),

Then, for m=0, 1, ...,
1 =9}
e P E a. s E—Aﬂz —ApTm M
afa) o e D=
—sm+1)"* as x—0+4;

and so, for any polynomial p(t) = p,+p,t+p,t* +... + p,, ™,

2 @, 8, €T ple )55 3 p(k+1)7 = SJ pt)dx(t) as z—0+.

1
(ﬂ'; k=0 0

a(z) ,

Since y i.s continuous at ¢ it is readily demonstrated that, given € > 0, there are
polynomials p(¢), ¢(t) such that

pt) S () <gt) for 0<t<1 and fl(q(t)—p(t))dx(t)<e.
0

It follows that

Z—0+ g . z

Hence 1/;( —log C) - l 1 % PP s(—logc) _
a(— Ogc) Pt T(p+1)
Ay

k
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Taking s, = 1 for k=1, 2, ..., we obtain

e e

n — (_log C)p (5)

1
Consequently £ f.Tﬂ
Note that the case in which (4) holds can be proved somewhat more simply along

the lines of the proof of Case 1 of theorem 1 in [1].

Proof of Theorem 4. The theorem follows immediately from (5) with ¢ = 1/e and

Lemma 1. |

4. Proof of Theorem 3
(Cf. the proof of theorem 2 in [1].) Let z > 0. By Cauchy’s mean value theorem,

e—z\ﬂx - e—zanx 1— 6—).“2;

e—)\ﬂa: — e—Aon

= { —e A=A T

. gultn g 0<§<
- An+1 - /\'n, 8_(’\"""1—‘1”)5 ( x)

= _AL_._ e(‘\nﬂ—z"n) 4

An+1_An
A
<—=2 _ for n=N, (6
An+1_An )

where N is a sufficiently large positive integer. Since a(x) -0 as x — 0+, it follows
from (2) and (6) that

N-1 o]

0 <a(z)—a@z)= T aye?—e %)= X + X
n=1 n=1 n=N
= ofa(@)) + T o(d,) (e —exn?)
n=1
=ola(z)) as xz—0+
as in the proof of Theorem 1. Hence
figs 22
oo+ OE)
and this implies that
lim 2 — 1 forall ¢>0. ()
z—0+ a(az
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Now let {y,} be a sequence of positive numbers such that

y An Yn = H(AnJrl _An)An)

so that, by (3), s, +7,
have

g
—r <) < 1+E_£ for 0<t<

and hence, by (6),

17

- _1__ < Ay T "/\ x T = ) —An & A,z
Vo) = o5 3 oot 7a) )~ Ty (o)
1 _ 0(22) a(2x) 1 - STy
s(1+c)o(x) @) +C(1_C)a(x) nZ:Jlafﬂ, (gt — gt
N-1

" (1 +%) o) T20) ) U ( 3 A (e

calx) alx) \,-,

where M is a positive constant. Therefore

lim sup ¢r(z) <

=0+

(l+%)s—g+M =8+ M < o0.

Similarly lim infyr(z) > — o0}

z -0+

and hence ¥ (x) = O(1) as x — 0+. It follows that

—logec\ 1 e _
"”( A, )“ (-logc)ki“"s"‘of”
NA

Further, since (5) is a consequence of (7),

—loge
a ”“( . )

and therefore t, = = 5 a, 8, = O(1).
An k=
Now let byi=A4,(A,,—A,) for n=1,2

and

Then

= E_A”ﬂx) + E Up ¥V

n=1

)

= 0. Next, for ¢(t) defined as in the proof of Theorem 2, we
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Also, given y€ (0, 1), there is a positive integer r such that A, > yA,,, for n>r,
and so .
yxb(x) < X Anyxf e dt+yxB, = a(yxr)+yzB,.
n=1 Ap
Consequently, by (7), P
b B, 1
{ < Timint PO ¢ lim wup 2 < i ST VER, 2
g0t O so0s ) 204 ya(x) ¥
and therefore xb(x) ~a(x) as z—-0+. (9)

Further,t,+K > 0forn=1,2, ... and some positive constant K, and, as in the proof

of Theorem 1,

(o]
S (t+K) Ay(e77 — e oni%)

n=1

(o(@) +K) alz) =

~(s+K)a(x) as xz—-0+.

Hence, as in the proof of (9),

xr(x)bz)+ Kxbx) =z T (1, +K) 4,(Ap1—An) e tn
n=1
~ (s+K)a(x) as x—0+,
and so, by (9), 7(x) =8 as x—-0+.
Since, by (7) and (9),
I M,__ forall t>0,
-0+ b(;l’:)
it follows, by (8) and Theorem 2, that
1 n
= ¢ s 10
Up Bn k§1 bk 8 ( )
Further, by (2), (3) and (8), we have that, for n > 1,
o G, G MAnmTA)
t'n bpy = SnAn tn—lAn/ An
for some positive constant . Thus, since A,,, ~ A, and A, =0,
m —
bp—t, Z—p Z Mﬂu—‘uloga—m when m>mn—0
k=n+1 )".’c An
(see [7], p. 292), and so
A
lim inf(t,,—t,) >0 when m>n—c0 and »/\—m—-»l (11)
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Now, by (2),
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Apiy Ay =y = by +A, 8, ~ by,
and hence, since B, = 4,(A,.,—A;) =0,
Ay Ay~ By,

It follows that, provided A,,., > (1+8)A,,, 0 >0,

B, i =
=] A (A, —A
B, +Bn k=§+1 k(-k-t—l %)
A A,
21+J(Am+1—/lﬂ+l)21+6—1\n+1—>1+8 as 7n —o0. (12)
B B,

Suppose now without loss of generality that s =0, ie. u, = 0. It follows from
(11) that, given ¢ > 0, there are positive numbers p, § such that ¢, —f, > —e when
m>n>pand A, < (1+28)A,,, Consequently if m, n satisfy these conditions we
‘have, by (10), that

m m 5 m
(t,—€) B by< I biby=1ttyBn—uB, <lpte) T by,

k=n+1 k=n+1 k=n+1
and hence that
w, B —u, B U, — U
t —e< m m i n= m n '-<~.t .
€ __—-_———Bm_"Bn um+————(Bm/Bn)_l m € (13)

Letting m, n — 00 subject to 148 < A,,,,/A 4 < 1424, it follows from (12) that

1
BoB)—1_ oW

and hence from (13) that

lim supt, <e and liminf{, = —e.

Therefore ¢, -+ 0. |

Example 1. Since A, := n, a, := 1/n satisfy the conditions of Theorem 3, we get as
a corollary of that theorem a result due to Kochanovski [8], namely if

e o]
1 S n

mn{:lny —»s as y—1— and s, =2—Hlogn for n=>1,

1 2 s,
logn ;51 T

then

Example 2. Let A, :=logn; a,:=1, a,:=1/(nlogn) (n > 2). These sequences
satisfy the conditions of Theorem 3. Further, for z > 0, -
e o]
. 1

ax)=— % —=1—§(1+x)~—i as

iz
n—2 M

x— 0+,

by a known property of the Riemann zeta function or by Lemma 2 (below) with
A, 1= logn. Consequently, as z — 0+,

T 11
a(x) =a(1)—j a/(t)dtrvf ?dtz—logx.

T z
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Thus Theorem 3 yields the following result: if

o
1 S,

1 “"""llogn_*s as z—0+ and s,=>—Hloglogn for n>=3,
—logz .oy n

1 o 8
then log logn ,E2 klogk N

~

5. An alternative version of Theorem 2

THEOREM 5. Suppose that b, = —Ha,, forn = 1, 2, ... where H is a positive constant
and that the Dirichlet series b(x) is convergent for all x > 0. If a(x) satisfies (1) and
b(x)/alx) — s as x> 0+, then B, /A, —s.

Proof. Since (see [5], theorem 27)

lim 4, = lim a(z),
n->w0 -0+

the proof is immediate when {4,} is convergent. Suppose therefore that
A4, —»o.
Case 1. a, >0 for n =1, 2, .... This case follows immediately from Theorem 2.
Case 2.a,>0forn=1,2,.... Let
a0
Elw) 1= X g e s,
k=1
where ¢, >0 for k=1, 2, ..., and T2, ¢, <co. Then (see [5], theorem 27)
e(x) = e0) as z—0+.

Let a*(x) = a(z)+e(x), b*x)= b(x)+e(x),

and define a*, A%, b, BY in the obvious way. Then a} > 0 and b} > —Haj for

n=1, 2, ..., and, since a(x) o0 as x— 0+, (1) is satisfied with a*(x) in place of
a(x). Further,
*
b(x)—wf as x—0+ if and only if M—a's as x—0+,
a*(x) a(x)
. B
and B_S — ¢ if and only if A_: —s.

Case 2 now follows from Case 1. |
In the rest of the paper we no longer presuppose that a, = 0.

6. Auziliary results

The following two lemmas show how to generate Dirichlet series a(z) that satisfy
(1). The conditions in the lemmas on L(x) are satisfied when L(z) is (for large x) a
logarithmico-exponential function (see [4]) in the range

2% < L(zx) < .
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Examples of such functions are given by
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L(x) : = (logz)® (log log x)%...,
where ¢,, ¢,, ... are real numbers.

LemMA 2. Suppose that p > 8 > 0, ¢ > 0, ¢ > 0 and that L(x) is a positive continuous
function on (0, 00) such that 2’L(x) is increasing and x°L(x) is decreasing on (c, 00),
and p

lim L) 1 for all

t>0.
L(x)

I—ow
Suppose also that A, ~ A, and
Ay ™~ (An—An-r) Afz)l L(A,).

Then a(x) ~ T(p)x L (é) as x—04+,

1 1 AP
A, wie———g [ Ve TR,
" F<p+1)“(kn) p L)

Proof. Suppose without loss of generality that A, > A, =0, and let
bn = (An _Anfl) Afz—l L(An)

and

for #u=1,2 ..

Given y > 1, there is a positive integer N such that Ay_, >¢ and A, <yA,_, for
n = N.-Hence, for n > N and A,_, <t < A,, we have t <A, <yt and so

18 L(t) 70 (pt) e 7 S A L(A,) e < () Liyt) (yt) Pt et
for x > 0. It follows that

e J (yty *Lit)e*dt < X

An n=N+1

(A= Apy) AT L(A,) €707

<7y J it Liyt) e " dt,
A
and hence that N

Observe next that, for y = c and t = ¢/y,

Lity) _ (ty)’ Lity)

= ¥ <t? when (<1,
Ly o' L(y)
L(ty) _ (ty)™ L(ty)
and = te<t® when (>1;
Liy)  y*L(y)
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that
o Lty) < oy
L(y) ’

tL~ 2 if 0<i<g1,
IO =\ if t>1.

—

where

It follows that, for 0 < 2 < 1/c and u 2 YAy,

)
b

and hence, by Lebesgue’s theorem on dominated convergence, that

()
lim wles Y gy = f wle v du = [(p),
-0+ J yaAy L (l) 0
X

d
since lim —2 =1 and j wle Tty (:) du < 0.
) 0

-0+ L(l

T

Likewise

)
J up—le—'u x

; . af
and consequently, since lim — = 0,
:1:—‘0+L -
(x
af
Yy 10(p) < lim inf——b

z—0+ 1

i (x) < lim sup —i-b(a:) < yT(p).
o) ()

Since y# ' - 1 and y* - 1 as y — 1 —, it follows that

T

xf
lim ——b(x) = ['(p).
x—rU+L (1')
X

Therefore (1) is satisfied with b(x) in place of a(z) and so, by Theorem 4,

1 1) A
B, i il ] 2
" T(p+1) (/\n) P
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Finally, since B, —co, the methods M, and D, , are regular; and hence, since |
a, ~b,, we have i

a(x) ~ b(x) ~ T'(p)z L (i«) as x—0+,
and

A, ~B,

nEEMMA 3. If the function L(x) and the sequence {2} salisfy the conditions of Lemma 2
(25

AP
n ™ _RL(AH.)’
P

then afx) ~ I‘(p)x‘PL(:%) as z—0+.

Proof. Let z > 0. Suppose without loss of generality that A, > 0, and let

n
B,=3b,:=ALA,) for n=1,2, ...
k=1

Then B,e™s® = 0(A5P¢*»%) =0o(1) as n—c0, and hence, as in the proof of
Theorem 1,

b(z) = T By(eMT—e 7).

n=1

a(@) = X A, (€M% —eten2)
n=]

Likewise

and, since pA, ~ B, it follows, again as in the proof of Theorem 1, that pa(x) ~ b(x)

1 1y »
’“m“(r)“‘?”"“' ' |

T

as x — 0+. Thus it suffices to prove that

b(x)~F(p+1)m_PL(-:-7) as x—0+.

Given y > 1, there is a positive integer N such that Ay >¢ and A,,, < yA, for
n = N. Hence, for n > N and A, <¢<A,,,, we have { < yA, and so

YPTPL(E) = v L() < A5TAL(A,) = A5 L(A,)
=B, = A270A% L(A,) < v L(t) = L{t).

It follows that, for n = N,

Anty An
Y L PL(t) et dt < B, a"}(e T — e hnn®) f C L e,
n "ﬂ .

and hence that

E Bn(e-ﬂn:c__e—aﬂﬂz)
L l n=N
&
3)
x

o0
< f wre ¥ ——— .
ZA N

)
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Now, as in the proof of Lemma 2,

lim | we*——Ldu=T(p+1),
=0+ JzAy L 1
x
and consequently, since
. x”
lim —— =0,
z—+0+L !‘_
x

%b

Since y ¢ — 1 as y = 1 —, it follows that

(z) < lim sup—xp——b(m) <T(p+1).

z—=0+ i 1
xr

y P eD(p+1) < lim inf

z—=0+

lim _x’;b(x) =Tp+1). |
x—~0+L(_];)
x

Example 3. Suppose 4, ~ n(logn)"* where p > 0. Then it is easily seen that
“k e Ak ‘A’ﬂ i (1Og n)P.
k=1 k k=1 k(k+1) n+1 p

as x—0+4.

~ D(p)a*

The case p = 1, 2, ... of this example appears as example 20 on page 317 in [1].

7. An extension of Theorem 4

TaEoREM 6. Suppose that by >0, b, = 0 and a, = —Hb, forn=1, 2, ... where H
is a positive constant, and that the Dirichlet series a(x) and b(x) are convergent for all

x> 0. Suppose also that

o 0l)
lim inf — > 0,
o0+ O(Z)
and that
. b(mz) a(mx) _ :
1 = S =gq,>0 for m=2 and m=3. (14)
zirit b(zx) zoor OT) f
Then a(x) = x "L (i) for x>0,

where p = —log,a, = 0 and L(x) is a function (defined for x > 0) satisfying

Ltx)

t>0,
Lx)

lim

r—w

=1 forall

1 1 Y
. Y (5.3 SR T WY
F(p+1)a’(?tn) T(p+1) )

and A
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Proof. Let
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e(x) := a(x) + Hb(x).
Then, for m =1, 2,

cimz) _ a(mx) 4 (b(mx) _a(mx))g_x_)_) o

¢(x) a(x) bx) alx) Jelx) T e

z—0+4,

since b(x) = O(c(x)) as x— 0+. Further, ¢, =20 for n=1, 2,

.... It follows, by
Lemma 1, that, for all ¢ > 0,

tirm 29 gy SO
zoot D) soos €()
where p = —log, a,, and so
a(tx)  c(tx) (b(tx) c(tx)\ b(x)
= —H — —p
a(@) o S e E
since b(x) = O{a(x)) as x = 0+ . If we now define
L(z):=x"*a (1),
x
(i)
we see that L) ={r 2. 1 as xz—o0.

e
al =
x
Finally, we have, by Theorem 4, that
1 1 1 i
B, ~———=b|+— ~ =
T+ ) (A) and o r(p+1)"(f\,.)’

de _ On (B Ce VMU, ]
a(t/A) ~ o(1/A,)  \B(1/A,) " e(1/A) a(t/A,) ~ Tlp+ 1)’

and so

since b(zx) = O(a(z)) as x> 0+. |
The following corollary of Theorem 6 generalizes Hardy and Littlewood’s
theorem E in [3].

COROLLARY. Suppose that p>8>0, ¢>0, €>0 and that K(z) is a positive
continuous function on (0, 00) such that 2’K(x) is increasing and x°K(x) is decreasing
on (¢, ), and
Ktx)
K{x)

lim

T o0

=1 forall t>0.

Suppose that A, ., ~ A, and

@, = ""H()‘n_’ln—l)/leflK(’ln) fO’J’ n= 2’ - R

531

where H is a positive constant, and that the Dirichlet series a(x) is convergent for all
z > 0. Suppose also that
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. x’
lim inf——a(x) > 0,

-0+ K (l
x

and thai lim %) _ e for m=2 and m=3. (15)
: 0+ a(x)
e
Then a(x) = "L (-a;) for x>0,

where L(z) is a function (defined for x> 0) satisfying

Litz) _

lim =1 forall t>0,
Imoe =t 1
1 1 »
ol —) = L(A).
and A~ Tt 1)“(&.) T+ 1) )

Proof. Suppose without loss of generality that b,:= 1 and a,:= —H. Let

b = (’ln_hn-l)/\%_lK()‘n) for n=2,3,....

Then, by Lemma 2, the Dirichlet series b(z) is convergent for all x> 0, and
(1
b(x) ~ L(p) = PK(;) as z—0+.

The result now follows from Theorem 6. |

Remarks. In view of theorem 1:8 in [9], the integers 2, 3in (1), (14) and (15) can
be replaced by any pair of positive numbers p, ¢ + 1 such that log, p is irrational.
It is known (see [9], p. 49) that the hypothesis

(k) L{x) is a positive continuous function on (0, ) such that, for some ¢ > 0 and every
8> 0, 2’ L(x) is increasing and x*L(x) is decreasing on (¢, o©)

Ltx)

L(z)

=1 forall t>0.

implies that lim

T—+00

Thus the hypotheses on L(x) in Lemmas 2 and 3 can be replaced by (h), and the
hypotheses on K(x) in the corollary of Theorem 6 can be replaced by (k) with K(x)
in place of L(z).
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