On Generalized Hausdorff Matrices*

DAVID BORWEIN, F. PETER CASS, AND JOHN E. SAYRE

Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B9, Canada

Communicated by R. Bojanic

Received February 23, 1984; revised March 20, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

INTRODUCTION

Given a matrix $A = \{a_{n,k}\}$ (n, k = 0, 1, 2,...) and a sequence $\{s_k\}$, the notation $s_n \to s(A)$ means that $\sum_{k=0}^{\infty} a_{n,k} s_k$ converges for n = 0, 1, 2,... and tends to s as $n \to \infty$. The matrix A is said to be regular if $s_n \to s(A)$ whenever $s_n \to s$. Necessary and sufficient conditions for A to be regular are

$$\sup_{n} \sum_{k=0}^{\infty} |a_{n,k}| < \infty;$$

$$\lim_{n \to \infty} a_{n,k} = 0, \qquad k = 0, 1, 2, ...;$$

$$\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{n,k} = 1.$$

Suppose throughout that $\{\lambda_n\}$ is a sequence with

$$\lambda_0 \geqslant 0 \text{ and } \lambda_n > 0 \text{ for } n > 0.$$
 (1)

Let Ω be a simply connected region that contains every positive λ_n , and suppose that, for $n=0,\,1,\,2,...,\,\Gamma_n$ is a positively sensed Jordan contour lying in Ω and enclosing every $\lambda_k \in \Omega$ with $0 \le k \le n$. Suppose that f is holomorphic in Ω and that $f(\lambda_0)$ is defined even when $\lambda_0 \notin \Omega$. Define

$$\lambda_{n,k} = -\lambda_{k+1} \cdots \lambda_n \frac{1}{2\pi i} \int_{\Gamma_n} \frac{f(z) dz}{(\lambda_k - z) \cdots (\lambda_n - z)} + \delta_k \quad \text{for } 0 \le k \le n,$$

$$= 0 \quad \text{for } k > n, \quad (2)$$

* This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

where $\delta_k = f(\lambda_0)$ if k = 0 and $\lambda_0 \notin \Omega$, and $\delta_k = 0$ otherwise. Here and elsewhere the convention that products like $\lambda_{k+1} \cdots \lambda_n = 1$ when k = n is observed. In many applications f is a Mellin transform

$$f(z) = \int_0^1 t^z d\alpha(t) \tag{3}$$

where $\alpha \in BV$, the space of functions of bounded variation on [0, 1]. In this case the region Ω in which f is holomorphic contains $\{z: \operatorname{Re}(z) > 0\}$; if $0 = \lambda_0 \notin \Omega$ and, with this f in (2), the order of integration is changed, then the value of $\lambda_{n,k}$ is unaffected by allowing Γ_n also to enclose λ_0 and taking $\delta_0 = 0$.

Matrices whose entries are given by (2) are called generalized Hausdorff matrices. The most familiar examples are those for which f(z) is given by (3). If $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n$, $\lambda_n \to \infty$ and $\sum_{n=1}^{\infty} (1/\lambda_n) = \infty$, then (2) yields the matrices considered by Hausdorff in [3]; further, if $\lambda_n = n$, they are the matrices discussed by Hausdorff in [2] (see also Hardy [4]). The latter include the familiar Cesàro, Hölder, and Euler matrices.

For $0 < t \le 1$, let $\lambda_{n,k}(t)$ denote the value of $\lambda_{n,k}$ obtained from (2) by taking $f(z) = t^z$, and let $\lambda_{n,k}(0) = \lambda_{n,k}(0+)$. Note that, from the theory of residues, $\lambda_{n,k}(t)$, for t > 0, is a linear combination of the functions $t^{\lambda_s} \log^r(t)$, s = 0, 1, 2, ..., r = 0, 1, 2, ..., the coefficient of t^{λ_0} being 1 when $\lambda_0 = 0$. Hence, since $\lambda_s > 0$ for $s \ge 1$,

$$\lambda_{n,k}(0) = 1$$
 if $k = 0$ and $\lambda_0 = 0$,
= 0 otherwise (4)

(cf. [1, p. 947]). Let

$$D_0 = (1 + \lambda_0) d_0 = 1, \tag{5}$$

$$D_n = \left(1 + \frac{1}{\lambda_1}\right) \left(1 + \frac{1}{\lambda_2}\right) \cdots \left(1 + \frac{1}{\lambda_n}\right) = (1 + \lambda_n) d_n \quad \text{for } n \ge 1.$$
 (6)

Then, for $n \ge 0$,

$$D_n = \lambda_{n+1} d_{n+1} = 1 - d_0 + \sum_{k=0}^n d_k.$$
 (7)

It is known that if all the λ_n 's are different, then

$$\int_0^1 \lambda_{n,k}(t) dt = d_k/D_n \quad \text{for} \quad 0 \le k \le n.$$
 (8)

See [3, p. 294]. A simple continuity argument applied to (2), with $f(z) = t^2$, shows that (8) remains valid when different λ_n 's are allowed to coalesce. The generalized Hausdorff matrix $M_d = \{a_{n,k}\}$ with $a_{n,k} = d_k/D_n$ for $0 \le k \le n$ is a weighted mean matrix when $d_0 = 1$ and otherwise differs in only a minor way from a weighted mean matrix. Conversely, every weighted mean matrix with positive weights may be regarded, in view of (5), (6), (7), and (8), as a generalized Hausdorff matrix with $\lambda_0 = 0$. The matrix M_d is regular if and only if $D_n \to \infty$. Note the following equivalences:

$$D_n \to \infty$$
 is equivalent to $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$;
 $d_n/D_n \to 0$ is equivalent to $\lambda_n \to \infty$;
 $d_n/D_n \setminus$ is equivalent to $\lambda_n \nearrow$.

REGULARITY

In this section conditions are established for the regularity of generalized Hausdorff matrices. The following lemma is required; it concerns matrices $\{\lambda_{n,k}\}$ given by (2) with the function f satisfying, for some real number c, a condition of the form

$$(-1)^r f^{(r)}(x) \ge 0$$
 for $r = 0, 1, 2,...$ and $x > c$; (9)

and the region Ω , in which f is holomorphic, satisfying the condition

$$\Omega \supset (c, \infty).$$
 (10)

LEMMA 1. (i) If (9) and (10) hold with c = 0, then $l_k = \lim_{n \to \infty} \lambda_{n,k}$ exists for k = 0, 1, 2, ... If, in addition,

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty,\tag{11}$$

then $l_k = 0$ for k = 1, 2, 3,..., and $l_0 = 0$ if $\lambda_0 > 0$.

(ii) If $\lambda_0 = 0$, (9) and (10) hold with $c = -\varepsilon$ for some $\varepsilon > 0$, and (11) holds, then $l_0 = 0$.

Proof. If $a \le \lambda_{\nu} \le b$ for $k \le \nu \le n$, then

$$-\frac{1}{2\pi i} \int_{\Gamma_n} \frac{f(z) \, dz}{(\lambda_k - z) \cdots (\lambda_n - z)} = \frac{(-1)^{n-k}}{(n-k)!} f^{(n-k)}(\xi) \tag{12}$$

for some $\xi \in [a, b]$. (See Lorentz [5].) Further, the recursion formula

$$\lambda_{n,k} - \lambda_{n+1,k} = (\lambda_{k+1}\lambda_{n+1,k+1} - \lambda_k\lambda_{n+1,k})/\lambda_{n+1}$$
 for $0 \le k \le n$

is an immediate consequence of (2). Letting $\Lambda_{n,k} = \sum_{v=0}^k \lambda_{n,v}$ for $0 \le k \le n$, it follows, as in Hausdorff [3], that

$$\Lambda_{n,k} - \Lambda_{n+1,k} = (\lambda_{k+1}\lambda_{n+1,k+1} - \lambda_0\lambda_{n+1,0})/\lambda_{n+1}.$$
 (13)

Suppose now that $\lambda_0 = 0$, then, by (12), $\lambda_{n+1,k+1} \ge 0$ so that, by (13), $\Lambda_{n,k} \ge \Lambda_{n+1,k} \ge 0$. Hence, $L_k = \lim_{n \to \infty} \Lambda_{n,k}$ exists and so does $l_k = L_k - L_{k-1} = \lim_{n \to \infty} \lambda_{n,k}$ (with $L_{-1} = 0$). Equation (13) also shows that, for $k = 0, 1, 2, \ldots$, the series $\sum_{n=0}^{\infty} \lambda_{n+1,k+1}/\lambda_{n+1}$ is convergent; consequently, by (11), $l_k = 0$ for $k = 1, 2, \ldots$

Next, suppose that $\lambda_0 > 0$. Define $\tilde{\lambda}_0 = 0$ and $\tilde{\lambda}_n = \lambda_{n-1}$ for n = 1, 2, 3, ..., and define $\tilde{\lambda}_{n,k}$ in the same way as $\lambda_{n,k}$ but with $\tilde{\lambda}_n$ replacing λ_n . Then $\lambda_{n,k} = \tilde{\lambda}_{n+1,k+1}$ for $0 \le k \le n$, and hence $l_k = \lim_{n \to \infty} \lambda_{n,k} = \tilde{l}_{k+1} = \lim_{n \to \infty} \tilde{\lambda}_{n+1,k+1} = 0$ for k = 0, 1, 2, This establishes (i).

Suppose now the hypotheses of (ii) hold. Then, for sufficiently small positive η ,

$$\lambda_{n,0} = -\lambda_1 \lambda_2 \cdots \lambda_n \frac{1}{2\pi i} \int_{\Gamma_n} \frac{f(z) dz}{-z(\lambda_1 - z) \cdots (\lambda_n - z)}$$

$$= -(\lambda_1 + \eta) \cdots (\lambda_n + \eta) \frac{\gamma_n}{2\pi i}$$

$$\times \int_{\Gamma_n} \frac{f(z - \eta) dz}{(\eta - z)(\lambda_1 + \eta - z) \cdots (\lambda_n + \eta - z)}$$

where $0 \le \gamma_n = \lambda_1 \lambda_2 \cdots \lambda_n / (\lambda_1 + \eta) \cdots (\lambda_n + \eta) \le 1$. Since $\sum_{n=1}^{\infty} 1 / (\lambda_n + \eta) = \infty$ when (11) holds, it follows from the earlier part of the proof that $l_0 = 0$. This completes the proof.

It follows from Lemma 1, with $f(z) = t^z$, and from (4) that, for $0 \le t \le 1$,

$$\lim_{n \to \infty} \lambda_{n,k}(t) = 1 \qquad \text{if } t = 0, k = 0, \text{ and } \lambda_0 = 0,$$

$$= 0 \qquad \text{otherwise.} \tag{14}$$

Next, for $\lambda_0 = 0$, one has [5, p. 46]

$$\frac{1}{z} = -\sum_{k=0}^{n} \frac{\lambda_{k+1} \cdots \lambda_n}{(\lambda_k - z) \cdots (\lambda_n - z)},$$

and hence if $0 \in \Omega$ (so that f is holomorphic at 0), then

$$\frac{1}{2\pi i} \int_{\Gamma_n} \frac{f(z)}{z} dz = f(0) = \sum_{k=0}^n \lambda_{n,k}.$$

For $\lambda_0 > 0$, put $\tilde{\lambda}_0 = 0$, $\tilde{\lambda}_n = \lambda_{n-1}$ for $n \ge 1$, to get

$$\sum_{k=0}^{n} \lambda_{n,k} = \sum_{k=0}^{n+1} \tilde{\lambda}_{n+1,k} - \tilde{\lambda}_{n+1,0} \to f(0)$$

provided that $\lambda_{n+1,0} \to 0$. In particular, with $f(z) = t^z$, this, together with (12), yields

$$0 \leqslant \lambda_{n,j}(t) \leqslant \sum_{k=0}^{n} \lambda_{n,k}(t) \leqslant 1$$
 (15)

and, in view of (4),

$$\lim_{n \to \infty} \sum_{k=0}^{n} \lambda_{n,k}(t) = 0 \quad \text{if } t = 0 \text{ and } \lambda_0 > 0,$$

$$= 1 \quad \text{otherwise.}$$
(16)

Borwein and Jakimovski show in [1] that if (11) holds and $\lambda_n \to \infty$, then for the matrix given by (2) to be regular, it is necessary that $f(z) = \int_0^1 t^z d\alpha(t)$ for some $\alpha \in BV$. There is thus no real loss in so restricting f in the following theorem.

Theorem 1. Suppose that (11) holds and $f(z) = \int_0^1 t^z d\alpha(t)$ for some $\alpha \in BV$ with

$$\alpha(1) - \alpha(0) = 1 \tag{17}$$

and

$$\alpha(0+) = \alpha(0). \tag{18}$$

Then the matrix $\{\lambda_{n,k}\}$ defined by (2) is regular.

Proof. By Lebesgue's theorem on bounded convergence, it follows from (14) and (18) that, for k = 0, 1, 2,...,

$$\lambda_{n,k} = \int_0^1 \lambda_{n,k}(t) d\alpha(t) \to 0$$
 as $n \to \infty$;

and from (16) and (18) that

$$\sum_{k=0}^{n} \lambda_{n,k} = \int_{0}^{1} \left(\sum_{k=0}^{n} \lambda_{n,k}(t) \right) d\alpha(t) \to \int_{0}^{1} d\alpha(t) \quad \text{as } n \to \infty.$$

Also, from (15),

$$\sum_{k=0}^{n} |\lambda_{n,k}| \leqslant \int_{0}^{1} |d\alpha(t)|.$$

In view of (17), the matrix is regular.

GENERALIZED HÖLDER AND CESÀRO MATRICES

The next lemma concerns products of certain matrices.

LEMMA 2. Suppose that g and h are holomorphic in Ω and are defined at λ_0 even when $\lambda_0 \notin \Omega$. Let A, B, and C be the Hausdorff matrices given by (2) with f replaced by g, h, and gh, respectively. Then C = AB.

Proof. It is sufficient to establish the result for $\lambda_0=0$ since the general result then follows in the usual manner by defining $\lambda_0=0$ and $\lambda_n=\lambda_{n-1}$ for $n\ge 1$. For m=0,1,2,..., let A_m , B_m , and C_m be the principal $m\times m$ minors of the matrices A, B, and C, respectively. It is now sufficient to show that $C_m=A_mB_m$. Suppose first that λ_0 , $\lambda_1,...$, λ_m are distinct. Then, as in Hausdorff [3], there is a matrix ρ such that $A_m=\rho^{-1}\alpha\rho$, $B_m=\rho^{-1}\beta\rho$, and $C_m=\rho^{-1}\alpha\beta\rho$, where α and β are the diagonal matrices with g(k) and h(k), respectively, in the kth position along the diagonal. Thus $C_m=A_mB_m$, and a continuity argument shows that this equation remains valid if certain of the λ_ν 's are allowed to coalesce. This completes the proof.

For κ real, the Hölder matrix H_{κ} is the generalized Hausdorff matrix obtained from (2) by taking

$$f(z) = (z+1)^{-\kappa}.$$

For $\kappa > -1$, the Cesàro matrix C_{κ} is the generalized Hausdorff matrix obtained from (2) by taking

$$f(z) = \frac{\Gamma(\kappa+1) \Gamma(z+1)}{\Gamma(z+\kappa+1)}.$$

Hausdorff, in [3], showed that if $0 = \lambda_0 < \lambda_1 < \dots < \lambda_n \to \infty$, $\sum_{n=1}^{\infty} (1/\lambda_n) = \infty$, and $\kappa > -1$, then H_{κ} and C_{κ} are quivalent: i.e., $s_n \to s(H_{\kappa})$ if and only if $s_n \to s(C_{\kappa})$. It is now easy to extend the result as follows.

THEOREM 2. Suppose $\lambda_0 \ge 0$, $\lambda_n > 0$ for $n \ge 1$, $\sum_{n=1}^{\infty} (1/\lambda_n) = \infty$, and $\kappa > -1$. Then H_{κ} and C_{κ} are equivalent.

Proof. Let

$$g(z) = \frac{\Gamma(\kappa+1) \Gamma(z+1)}{\Gamma(\kappa+z+1)} (z+1)^{\kappa}.$$

It follows from results of Rogosinski [6, pp. 188ff., 167] that $g(z) = \int_0^1 t^z d\alpha_1(t)$ and $1/g(z) = \int_0^1 t^z d\alpha_2(t)$ where $\alpha_i \in BV$, $\alpha_i(0+) = \alpha_i(0)$, and $\alpha_i(1) - \alpha_i(0) = 1$ for i = 1, 2. The desired conclusion now follows from Theorem 1 and Lemma 2.

REFERENCES

- D. BORWEIN AND A. JAKIMOVSKI, Generalization of the Hausdorff moment problem, Canad. J. Math. 33 (1981), 946–960.
- 2. F. HAUSDORFF, Summationsmethoden und Momentfolgen, I, Math. Z. 9 (1921), 74-109.
- 3. F. HAUSDORFF, Summationsmethoden und Momentfolgen, II, Math. Z. 9 (1921), 280-299.
- 4. G. H. HARDY, "Divergent Series," Oxford Univ. Press, London/New York, 1949.
- 5. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
- W. W. ROGOSINSKI, On Hausdorff methods of summability, Proc. Cambridge Philos. Soc. 38 (1942), 166–192.