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INTRODUCTION

Given a matrix 4= {a,,} (n, k=0, 1, 2,..) and a sequence {s}, the

notation s, — s(A4) means that ¥, a@,,S, converges for n=0, 1, 2,.. and

tends to s as n— oo. The matrix A is said to be regular if s5,— s(4)
whenever s, — 5. Necessary and sufficient conditions for A to be regular are

a0
sup Y. [@, <o0;

n k=0
lim g, =0, k=0,1,2.;
lim Y a,,=1

Suppose throughout that {4,} is a sequence with
io=0and 4,>0 for n>0.

Let © be a simply connected region that contains every positive 4, and
suppose that, for n=0,1,2,., ', is a positively sensed Jordan contour

lying in © and enclosing every A,€ & with 0 <k<n. Suppose that fis

holomorphic in € and that f(4,) is defined even when 4, ¢ 2. Define

flz) dz

for 0<k<n,
=2 a-2) "

A‘n,k:-ik+ll'.j‘ +5k

1
"Tm'L (Ji
- (2)
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where 8,=f(4o) if k=0 and i3¢Q, and 6,=0 otherwise. Here and
dsewhere the convention that products like A, ., **4,=1 when k=n is
observed. In many applications f is a Mellin transform

1
fle)= ran(o) 3)
0
where o € BV, the space of functions of bounded variation on [0, 1]. In this
case the region @ in which f is holomorphic contains {z: Re(z)>0}; if
0=A, ¢ 2 and, with this fin (2), the order of integration is changed, then
the value of 4, is unaffected by allowing I, also to enclose A, and taking
8,=0.
Matrices whose entries are given by (2) are called generalized Hausdorff

" matrices. The most familiar examples are those for which f(z) is given by

(3).I0=Ag<d <+ <y 4, o0 and 37, (1/4,)= o0, then (2) yields
the matrices considered by Hausdorff in [3]; further, if A, = n, they are the
matrices discussed by Hausdorff in [2] (see also Hardy [4]). The latter
include the familiar Cesaro, Holder, and Euler matrices.

For 0 <t <1, let 4,,(¢) denote the value of 4, , obtained from (2) by tak-
ing f(z)=17, and let 4,,(0)=4,,(0+). Note that, from the theory of
residues, 4, .(¢), for £>0, is a linear combination of the functions t* log’(1),
5=0,1,2,.., r=0,1,2,.., the coefficient of 7% being 1 when A, =0. Hence,

since 4, >0 fors=1,

A.(0)=1 ifk=0and 4,=0,
=0 otherwise (4)
(cf. [1, p. 947]).
Let
Doz(l"f”lo)da:l, (5)
1 1 1
Dn=(1+7)(1+—)---(1+— =(1+4,)d, for nz1l (6)
Ay Az A
- Then, for n =0,
D,=hpyidy 1 =1—do+ } d,. (7)
k=0
It is known that if all the 4,’s are different, then
1
j Itydt=d,/D, for 0<k<n. (8)
0



356 BORWEIN, CASS, AND SAYRE

See [3, p. 294]. A simple continuity argument applied to (2), with fz)=¢
~ shows that (8) remains valid when different A,’s are allowed to coalesce,

The generalized Hausdorff matrix M, = {a.e} with a,,=d/D [
0<k<n is a weighted mean matrix when d,=1 and otherwise differs i
only a minor way from a weighted mean matrix. Conversely, every
weighted mean matrix with positive weights may be regarded, in view of
(5), (6), (7), and (8), as a generalized Hausdorff matrix with Ao=0. The
matrix M, is regular if and only if D, — o0. Note the following equivalen-
ces:

(v 0]
D,— o isequivalent to } —=co;

n=1"n

d,/D, — 0is equivalent to A, — oo;

d,/D,xis equivalent to A, .

REGULARITY

In this section conditions are established for the regularity of generalized
Hausdorff matrices. The following lemma is required; it concerns matrices
{A,.x} given by (2) with the function f satisfying, for some real number ¢, a
condition of the form

(=1 (x)=0 for r=0,1,2,..and x>¢; 9)
and the region €, in which f is holomorphic, satisfying the condition

Q> (e, o). (10)

Lemma 1. (i) If (9) and (10) hold with ¢=0, then I, =lim, ., Au
1

(
exists for k=0, 1, 2,.... If, in addition,
>

then [, =0 for k=1, 2, 3,.., and I, =0 if 1,>0.

(i) If A=0, (9) and (10) hold with ¢ = —¢ for some &> 0, and (11)
holds, then I,=0.

Proof. Tfa<i,<bfor k<v<n, then

I O B
2nidr, (A—2) (A, —2z) (n—k)!

(11)

1
- =0,
1’{'71

fla=kg) (12)

T
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. for some { € [a, b].(See Lorentz [5].) Further, the recursion formula

A= Aps1x= (Ao tdniriers— Aedny 14 Ay for 0<k<n

isan immediate consequence of (2). Letting A, , =Y*_, A, for 0<k <n, it
! follows, as in Hausdorff [3], that

An,k*Anﬂ_k: (ik+1’7~n+1,k+1_lolnn,o)ﬁtnﬂ- (13)

| suppose now that A,=0, then, by (12), A, 4.;20 so that, by (13),

A= Api1420. Hence, L,=lim, . 4,, exists and so does [, =
b Li—1 =lim, , ., 4,, (with L_, =0). Equation (13) also shows that, for
{k=0,1,2,.., the series 327§ 4,4 1 44+ 1/4, 1 is convergent; consequently, by
%(11), [,=0fork=1,2... _ -

Next, suppose that A,> 0. Define 4,=0 and 1,=4,_, forn=1,2,3,.,
and define 1, in the same way as A,, but with 1, replacing A,. Then
Jpt=Ans 1441 for 0Sk<n, and hence [, =lim, ., A, =T, =lim,_
Tai1x+1=0for k=0, 1,2,... This establishes (i).

i Suppose now the hypotheses of (ii) hold. Then, for sufficiently small
| positive 7,

B 1 f(z) dz
j ln,o— _}.1/12 AH%J'F,, VZ(/II—Z)'”(/I,,—Z)
| = —(h+m) () o

af f=n) dz
=2k +n=2) (G tn—2)

Cwhere 0<y,=A;4, - 4,/(A 1) (4, +7)<L Since ¥= , 1/, +
)= o0 when (11) holds, it follows from the earlier part of the proof that

~ 1,=0. This completes the proof.

It follows from Lemma 1, with f(z) = ¢, and from (4) that, for 0< 1< 1,

lim A,,()=1

& n— o

ift=0,k=0,and 1,=0,

=0 otherwise. (14)

- Next, for 4,=0, one has [5, p. 46]
‘ L o pe

- _,Eo (le—z) (A —2z)
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and hence if 0 € 2 (so that f is holomorphic at 0), then

[ 1 p0)= ¥ 2
" k=0

2nilr z

For 2,>0, put 1,=0, Z,=1,_,forn>1, to get

Z Z ‘nd Lk n+1,0“‘f(0)
k=0 N

provided that Z,, ,,— 0. In particular, with flz)=
(12), yields

1%, this, together with

0<4,,(0< ) A<t (15)
k=0
and, in view of (4),
lim ) 4,,(1)=0  ifr=0and 1,>0,
n—oo Ty (16]

otherwise.

Borwein and Jakimovski show in [1] that if ( (11) holds and 1,- oo,
then for the matrix given by (2) to be regular, it is necessary that f )=
t” dx(t) for some « € BV. There is thus no real loss in so restricting f in the
following theorem.

TueoREM 1. Suppose that (11) holds and f(z)={} ¢ du(t) for some
e BV with
(1)~ a(0) = (17)
and
a(0+ ) = a(0). (18)

Then the matrix {4,,} defined by (2) is regular.

Proof. By Lebesgue’s theorem on bounded convergence, it follows from
(14) and (18) that, for k=0, 1, 2,...,

o= st

1) do(t) -0 as n— o0;
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und from (16) and (18) that

L=l (2,

| tso, from (15),

Ang(2) ) )ﬂrda(t) as n— oo,

Y sl < a0

{ In view of (17), the matrix is regular.

|

? GENERALIZED HOLDER AND CESARO MATRICES
. The next lemma concerns products of certain matrices.

é LEMMA 2. Suppose that g and h are holomorphic in Q and are defined at
lyeven when Ao ¢ §2. Let A, B, and C be the Hausdorff matrices given by (2)

with f replaced by g, h, and gh, respectively. Then C = AB.

Proof. It is sufficient to establish the result for 1, =0 since the general
{ result then follows in the usual manner by defining Z,=0and 7, =/, | for
121. Form=0,1,2,., let 4,,, B,,, and C,, be the principal m x m minors
of the matrices 4, B, and C, respectively. It is now sufficient to show that
tC =4,,B,,. Suppose first that iy, 4,,., 1, are dlstmct Then, as in
Hausdorﬂ" [3] there is a matrix p such that 4,,=p 'ap, B, =p 1,8p, and
C,=p~'afp, where « and B are the diagonal matrices with g(k) and A(k),
rspectively, in the kth position along the diagonal. Thus C,, = A4,,B,,, and
acontinuity argument shows that this equation remains valid if certain of
<the 4,’s are allowed to coalesce. This completes the proof.

For « real, the Holder matrix H, is the generalized Hausdorff matrix
obtained from (2) by taking

Sz)=

For x> —1, the Cesaro matrix C, is the generalized Hausdorff matrix
dbtained from (2) by taking

(z+1)""

Ir
|

f(2) Fx+1) Iz +1)

Zl=

. ' I'z4+x+1)

?H&usdorff in [3], showed that if 0=Jy<id, < <i,—00, ¥,

ifW .)=00, and k> —1, then H, and C, are qulvalent ie, s,— s(H,) if
“and only if s, — s(C,). It 18 now easy to extend the result as follows.
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THEOREM 2. Suppose 4y20, 4,>0 for nz=1, ¥ | (1/4,) =, and
k> —1. Then H,_ and C, are equwalent.

Proof. Let

Ik+1)I(z+1)
I'k+z+1)

glz)= (z+ 1)~

It follows from results of Rogosinski [6, pp. 188ff, 167] that g(z)

" doy(t) and 1/g(z)=[} ¢ da,(t) where a,e BV, a{0+)=a,0), andj

a1)—a0)=1 for i=1,2. The desired conclusion now follows from
Theorem 1 and Lemma 2.
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