A THEOREM ON RIESZ SUMMABILITY

D. Borwein*.

[Extracted from the Journal of the London Mathematical Society, Vol. 31, 1956.]

1. Suppose throughout that a is positive and, unless otherwise stated, that κ is a positive integer. Suppose further that the functions $\phi(w)$,

^{*} Received 18 July, 1955; read 17 November, 1955.

 $\psi(w)$ are defined in $[0, \infty)$, that $\phi(w)$ is non-negative and unboundedly increasing in this range and that both functions have absolutely continuous κ -th derivatives in every interval [a, W].

I shall be concerned with obtaining sufficient conditions to ensure the truth of the proposition

P. $\sum_{n=1}^{\infty} a_n \psi(\lambda_n) is summable \left(R, \phi(\lambda_n), \kappa \right) whenever (\lambda_n) is an unboundedly$

increasing sequence of positive numbers and $\sum_{n=1}^{\infty} a_n$ is summable (R, λ_n, κ) .

The following theorems are known.

$$T_1$$
. If $\phi(w) = e^w$, $\psi(w) = w^{-\kappa}$, then P.

T₂. If (i)
$$\psi(w) = 1$$
, (ii) $\int_a^w t^n |\phi^{(n+1)}(t)| dt = O\{\phi(w)\}$ $(n = 1, 2, ..., \kappa; w \ge a)$, then P.

$$\text{T}_3. \quad \text{If (i)} \ \phi(w)=w, \ \text{(ii)} \ \psi(w)=O(1) \ (w\geqslant a), \ \int_a^\infty t^\kappa \big|\, \psi^{(\kappa+1)}(t) \, \big| \, dt <\infty, \\ \text{then P.}$$

 T_4 . If $\phi(w)$ is an L-function* such that $w\phi'(w)/\phi(w) \geq 1$ and $\psi(w) = \{w\phi'(w)/\phi(w)\}^{-\kappa}$, then P.

 T_1 (for all $\kappa \geqslant 0$) is due to Hardy and Riesz [5], T_2 to Hirst† [8] and T_3 essentially to Hardy‡ [4]. T_4 (for all $\kappa \geqslant 0$) has recently been obtained by Guha§; it includes T_1 as a special case. Kuttner|| [9] has proved that T_2 (i) and P imply T_2 (ii). He also showed that the truth of T_2 (ii) for $n=1, 2, ..., \kappa-1$ ($\kappa \geqslant 2$) is a consequence of its truth for $n=\kappa$. I have proved [1] that T_3 (i) and P imply T_3 (ii)¶.

I shall prove the following theorem.

T. If (i) $\gamma(w)$ is positive and absolutely continuous in every interval [a, W] and $\gamma'(w) = O(1)$ for $w \geqslant a$,

(ii)
$$w^n \psi^{(n)}(w) = O\{(\gamma(w)/w)^{\kappa-n}\}\ (n = 0, 1, ..., \kappa; w \geqslant a),$$

(iii)
$$\int_a^\infty t^\kappa |\psi^{(\kappa+1)}(t)| dt < \infty,$$

(iv)
$$\int_a^w \{\gamma(t)\}^n |\phi^{(n+1)}(t)| dt = O\{\phi(w)\}\ (n = 1, 2, ..., \kappa; w \geqslant a),$$

then P.

It is evident that T_1 and T_2 are special cases of T, and T_3 can immediately be derived from T and the known result (see [3]) that T (ii) with $\gamma(w) = w$ is a consequence of T_3 (ii). Further, it can readily be shown that the hypotheses of T are satisfied when ϕ , ψ are as in T_4 and $\gamma(w) = \phi(w)/\phi'(w)$.

2. Some lemmas are required.

Lemma* 1. When m, n are positive integers, the n-th derivative of $\{g(t)\}^m$ is the sum of a number of terms of the form

$$A\{g(t)\}^{m-r} \prod_{s=1}^{p} \{g^{(s)}(t)\}^{c_s} \quad (r=1, 2, ..., m)$$

where A is a constant, the c's are non-negative integers and

$$1\leqslant p\leqslant n, \quad c_p\geqslant 1, \quad \sum\limits_{s=1}^p c_s=r, \quad \sum\limits_{s=1}^p s\,c_s=n.$$

The proof is elementary.

LEMMA 2. If T (i) and T (iv), then

$$\{\gamma(w)\}^n \phi^{(n)}(w) = O\{\phi(w)\} \quad (n = 1, 2, ..., \kappa; w \geqslant a).$$

For $n = 1, 2, ..., \kappa, w \geqslant a$,

$$\begin{split} \{\gamma(w)\}^n \, \phi^{(n)}(w) &= \{\gamma(a)\}^n \, \phi^{(n)}(a) + \int_a^w \{\gamma(t)\}^n \, \phi^{(n+1)}(t) \, dt \\ &\qquad \qquad + n \int_a^w \gamma'(t) \, \{\gamma(t)\}^{n-1} \, \phi^{(n)}(t) \, dt \\ &= O\{\phi(w)\}, \end{split}$$

since $\gamma'(t) = O(1)$.

Lemma 3. If $\lim_{w\to\infty}\int_a^\infty |f(w,t)| dt < \infty$ and $\lim_{w\to\infty}\int_a^y |f(w,t)| dt = 0$, for every finite y>a, and if s(t) is a bounded measurable function in (a,∞) which tends to zero as $t\to\infty$, then

$$\lim_{w\to\infty}\int_a^\infty f(w,\,t)\,s(t)\,dt=0.$$

The proof of this result† has been given by Hardy ([7], 50). Because of its brevity it is reproduced here.

^{*} For the definition and properties of L-functions (logarithmico-exponential functions) see [6].

[†] He also obtains a version of T_o involving fractional values of κ .

[‡] Hardy's result has been extended to fractional orders of summability by Cossar [3]. See also Theorem V in [2].

^{§ &}quot;Convergence factors for Riesz summability". [This *Journal*, 31 (1956), 311-319 (preceding paper).]

^{||} See also his paper [10].

[¶] See also [11].

^{*} This is Lemma A in [8]. A more general result due to Faa di Bruno is given in de la Vallée Poussin's "Cours d'analyse infinitésimale", I, pp. 89-90 in ed. 7.

[†] Cf. Theorem VI in [2].

For y > a,

$$\overline{\lim}_{w\to\infty} \left| \int_a^\infty f(w,t) \, s(t) \, dt \right| \leqslant \overline{\lim}_{w\to\infty} \int_a^y \left| f(w,t) \, s(t) \right| dt + \overline{\lim}_{w\to\infty} \int_y^\infty \left| f(w,t) \, s(t) \right| dt$$

$$\leqslant \overline{\text{bound}} \left| s(t) \right| \cdot \overline{\lim}_{w\to\infty} \int_a^\infty \left| f(w,t) \right| dt.$$

Since the final expression tends to zero as $y \to \infty$, the result follows.

3. Proof of T. Let (λ_n) be an unboundedly increasing sequence of positive numbers. Write, for $w \ge 0$,

$$\begin{split} A(w) &= \sum\limits_{\lambda_n \leqslant w} a_n, \quad A_m(w) = \frac{1}{m!} \int_0^w (w-t)^m dA(t) \quad (m=0,\ 1,\ \ldots), \\ F(w) &= w^{-\kappa} \sum\limits_{\phi(\lambda_n) \leqslant w} \{w - \phi(\lambda_n)\}^{\kappa} \psi(\lambda_n) \, a_n, \quad G(w) = F\{\phi(w)\}. \end{split}$$

We have now to prove that if

 $(\alpha)'$ $w^{-\kappa}A_{\kappa}(w)$ tends to a finite limit as $w\to\infty$,

then

 $(\beta)'$ F(w) tends to a finite limit as $w \to \infty$.

There is clearly no loss in generality if we prove this result with $(\alpha)'$ replaced by

(a)
$$A(w) = 0$$
 for $0 \le w \le a$ and $w^{-\kappa} A_{\kappa}(w) \to 0$ as $w \to \infty$.

Suppose therefore that (α) holds and note that $(\beta)'$ is equivalent to

(β) G(w) tends to a finite limit as $w \to \infty$.

Now, for $w \geqslant a$,

$$\begin{split} G(w) &= \{\phi(w)\}^{-\kappa} \sum_{\phi(\lambda_n) \leqslant \phi(w)} \{\phi(w) - \phi(\lambda_n)\}^{\kappa} \psi(\lambda_n) \, a_n \\ &= \{\phi(w)\}^{-\kappa} \int_a^w \{\phi(w) - \phi(t)\}^{\kappa} \psi(t) \, dA(t). \end{split}$$

Integrate $(\kappa+1)$ times by parts and use (α) , T (ii) (n=0) and Lemma 2 (n=1) to get

$$(-1)^{\kappa} G(w) + \{\phi(w)\}^{-\kappa} \int_{a}^{w} A_{\kappa}(t) \left(\frac{\partial}{\partial t}\right)^{\kappa+1} \left(\{\phi(w) - \phi(t)\}^{\kappa} \psi(t)\right) dt$$

$$= \{\phi(w)\}^{-\kappa} A_{\kappa}(w) \left(\frac{\partial}{\partial t}\right)^{\kappa} \left(\{\phi(w) - \phi(t)\}^{\kappa} \psi(t)\right)_{t=w}$$

$$= (-1)^{\kappa} \kappa! \{\phi'(w)/\phi(w)\}^{\kappa} \psi(w) A_{\kappa}(w)$$

$$= o(1) \text{ as } w \to \infty;$$

$$(1)$$

and observe that, for w > t > a,

$$\begin{split} \{\phi(w)\}^{-\kappa} \left(\frac{\partial}{\partial t}\right)^{\kappa+1} \left(\{\phi(w) - \phi(t)\}^{\kappa} \psi(t)\right) \\ &= \left\{1 - \frac{\phi(t)}{\phi(w)}\right\}^{\kappa} \psi^{(\kappa+1)}(t) \\ &+ \{\phi(w)\}^{-\kappa} \sum_{n=1}^{\kappa+1} {\kappa+1 \choose n} \psi^{(\kappa+1-n)}(t) \left(\frac{\partial}{\partial t}\right)^{n} \{\phi(w) - \phi(t)\}^{\kappa}. \end{split} \tag{2}$$

In virtue of T (iii) and (α), $\int_a^{\infty} |\psi^{(\kappa+1)}(t) A_{\kappa}(t)| dt < \infty$, and hence, by Lebesgue's theorem on dominated convergence,

$$\int_{a}^{w} \left\{ 1 - \frac{\phi(t)}{\phi(w)} \right\}^{\kappa} \psi^{(\kappa+1)}(t) A_{\kappa}(t) dt \to \int_{a}^{\infty} \psi^{(\kappa+1)}(t) A_{\kappa}(t) dt \text{ as } w \to \infty.$$
 (3)

Further, by Lemma 1,

$$\{\phi(w)\}^{-\kappa} t^{\kappa} \psi^{(\kappa+1-n)}(t) \left(\frac{\partial}{\partial t}\right)^n \{\phi(w)-\phi(t)\}^{\kappa} \quad (n=1,\ 2,\ \ldots,\ \kappa+1\ ;\ w>t>a)$$

is a linear combination of terms like

$$f(w, t) = \{\phi(w)\}^{-\kappa} t^{\kappa} \psi^{(\kappa+1-n)}(t) \{\phi(w) - \phi(t)\}^{\kappa-r} \prod_{s=1}^{p} \{\phi^{(s)}(t)\}^{c_s}, \tag{4}$$

where the c's are non-negative integers and $1 \leqslant r \leqslant \kappa$, $1 \leqslant p \leqslant n$, $c_p \geqslant 1$,

$$\sum_{s=1}^{p} c_s = r, \quad \sum_{s=1}^{p} s c_s = n.$$

Since $c_p = 1$ if $p = \kappa + 1$, we use T (ii) and Lemma 2 to deduce that there are constants M, N such that, for w > t > a,

$$\begin{split} |f(w,t)| &< M\{\phi(w)\}^{-r} t^{\kappa} |\psi^{(\kappa+1-n)}(t) \phi^{(p)}(t)| \{\phi(t)\}^{-1} \{\gamma(t)\}^{p} \prod_{s=1}^{p} \left(\{\gamma(t)\}^{-s} \phi(t) \right)^{c_{s}} \\ &= M\{\phi(w)\}^{-r} \{\phi(t)\}^{r-1} t^{\kappa} |\psi^{(\kappa+1-n)}(t)| \{\gamma(t)\}^{1-n} \{\gamma(t)\}^{p-1} |\phi^{(p)}(t)| \\ &< \frac{N}{\phi(w)} \{\gamma(t)\}^{p-1} |\phi^{(p)}(t)|. \end{split}$$

Hence, for fixed y > a,

$$\int_{a}^{y} |f(w, t)| dt \to 0 \text{ as } w \to \infty,$$

and, by T (iv),

$$\int_{a}^{w} |f(w, t)| dt = O(1) \text{ for } w \geqslant a.$$

Consequently, by Lemma 3,

$$\int_a^w f(w, t) t^{-\kappa} A_{\kappa}(t) dt \to 0 \text{ as } w \to \infty,$$

and this, together with (1), (2), (3) and (4) enables us to deduce (β) as required.

References.

- 1. D. Borwein, "A summability factor theorem", Journal London Math. Soc., 25 (1950).
- 2. L. S. Bosanquet, "The summability of Laplace-Stieltjes integrals", Proc. London Math. Soc. (3), 3 (1933), 267-304.
- 3. J. Cossar, "A theorem on Cesàro summability", Journal London Math. Soc., 16 (1941), 56 - 68.
- 4. G. H. Hardy, "Notes on some points in the integral calculus (XXX)", Messenger of Math., 40 (1911), 108-112.
- and M. Riesz, The General Theory of Dirichlet's Series (Cambridge Tract No. 18,
- 6. Orders of Infinity (Cambridge Tract No. 12, 2nd Edn., 1924).7. Divergent Series (Oxford, 1949).
- 8. K. A. Hirst, "On the second theorem of consistency in the theory of summation by typical means ", Proc. London Math. Soc. (2), 33 (1932), 353-366.
- 9. B. Kuttner, "Note on the second theorem of consistency for Riesz summability", Journal London Math. Soc., 26 (1951), 104-111.
- -, "On the second theorem of consistency for Riesz summability (II)", Journal London Math. Soc., 27 (1952), 207-217.
- 11. W. L. C. Sargent, "On the summability of infinite integrals", Journal London Math. Soc., 27 (1952), 401-413.
 - St. Salvator's College, St. Andrews.