A THEOREM ON RIESZ SUMMABILITY

D. Borwrrn®.

[Extracted from the Journal of the London Mathematical Soeciety, Vol. 31, 1956.]

1. Suppose throughout that a is positive and, unless otherwise stated,
that « is a positive integer. Suppose further that the functions d(w),

* Received 18 July, 1955; read 17 November, 1955,
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(w) are defined in [0, c0), that ¢(w) is non-negative and unboundedly
increasing in this range and that both functions have absolutely continuous
x-th derivatives in every interval [a, W].

I shall be concerned with obtaining sufficient conditions to ensure the
truth of the proposition :

P> a, Y(A,) ts summable (R, b (A,), K) whenever (A,) is an unboundedly
n=1

oo
increasing sequence of positive numbers and X a, is summable (R, A, «).

n=1

The following theorems are known.

Ty, If p(w) =e¥, (w) = w, then P.

T, I ) ) =1 j'wtn\qsmw(tndz: Olpw)} (n=1, 2, ..., k;
w = a), then P. :

Ty If () dw)=w, (i) p(w)=0(l) @w=a), j b o+ D(t) | di < oo,

a

then P.

Ty If $(w) is an L-function® such that wé'(w)/d(w) =1 and
$(w) = {w’ (w)/p(w)} =, then P.

T, (for all « > 0) is due to Hardy and Riesz [5], T, to Hirstt [8] and
T, essentially to Hardyt [4]. T, (for all « > 0) has recently been obtained
by Guha§; it includes T, as a special case. Kuttner| [9] has proved
that T, (i) and P imply T, (ii). He also showed that the truth of T, (ii)
for n=1, 2, ..., k—1 (x >2) is a consequence of its truth for n=x. I
have proved [1] that T, (i) and P imply T, (ii) .

I shall prove the following theorem.

T. If (i) y(w) ts positive and absolutely continuous in every interval
[a, W] and o' (w) = O(1) for w > a,

(i) wr™(w) = O0{(y(w)wy—"} (=0, 1, ..., «; w=>a),
(i) r b et (8) | df < oo,

(iv) jj{y(t)}”]qS("H)(tHdt: O{pw)} (n=1,2, ..., k; w=a),

then P.

* Tor the definition and properties of L-functions (logarithmico-exponential functions)
see [6].

t He also obtains a version of T, involving fractional values of k.

1 Hardy’s result has been extended to fractional orders of summability by Cossar [3].
See also Theorem V in [2].

§ “ Convergence factors for Riesz summability”. [This Journal, 31 (1956), 311-319
(preceding paper).]

|| See also his paper [10].

9 See also [11].
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It is evident that T, and T, are special cases of T, and T, can immed-
iately be derived from T and the known result (see [3]) that T (ii) with
y(w) =w is a consequence of T, (ii). Further, it can readily be shown
that the hypotheses of T are satisfied when ¢, & are as in T, and

y(w) = $(w)/¢’ (w).

2. Some lemmas are required.

Levmma* 1. When m, n are positive infegers, the n-th derivative of
{g(O)}™ is the sum of a number of terms of the form

»
Afge)y— 1L {go@) (r=1,2, ..., m)
g=1
where A is a constant, the ¢’s are non-negative integers and

l<<p<n, e

W
I e
l

iy
£ XN S0—m
ik §=1

The proof is elementary.
Lemma 2. If T (i) and T (iv), then
()¢ (w) = 0{p(w)} (n=1,2, .., k; w>a)

Forn=1, 2, ..., kx, w>=a,
() 00 = (@) $7(a)+ | GO $7 00

+n ]y OO0 @
= O{p(w)},
since y'(£) = O(1).
Levma 3. If lTnJ | f(w, §)|dt <o and lim r‘ Fw, )] dé = 0, for
every finite y > a, and if s(t) is a bounded measurable function in (@, co)

which tends to zero as t— oo, then

lim r Flw, £)s(t)dt = 0.

W0

The proof of this resultt has been given by Hardy ([7], 50). Because
of its brevity it is reproduced here.

* This is Lemma A in [8]. A more general result due to Faa di Bruno is given in
de la Vallée Poussin’s ““ Cours d’analyse infinitésimale 7, I, pp. $9-90 in ed. 7.
t Cf. Theorem VI in [2].
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For y > «a,
lim ‘\’ Sflw, t)s(t)dt‘ = limj |flw, t) s |dt—|— hm 5 | f(ew, £)s(2)| dt

< Found|s()]. T j 1 (aw, 8)) .
t2y

W—>0 Ja

Since the final expression tends to zero as y— oo, the result follows.

3. Proof of T. Let (A,) be an unboundedly increasing sequence of
positive numbers. Write, for w > 0,

Aw)= T a, Am(w):;n% [:(w—t)mm(t) (m=0,1,..),

Ap=w

Flwy=w> % {w—¢Q )} $A) e, Gw)=F{$w)}

d(An)<w

We have now to prove that ¢f

(o) w™ A, (w) tends to a finile limit as w—> oo,
then

(B)' F(w) tends to a finite limil as w—> oo,

There is clearly no loss in generality if we prove this result with («)’ replaced
by

(o) A(w) =0 for 0 <w < a and w4, (w)—0 as w—>co.
Suppose therefore that («) holds and note that (B)’ is equivalent to
(B) G(w) tends to a finite limit as w—oo.

Now, for w >a,

={p)~ I {pw)—dA)¢dM,)a

An) < Hlaw)
= (o[ B Oy 40A0

Integrate («--1) times by parts and use («), T (ii) (» = 0) and Lemma 2
(n=1) to get

(—1y 0+ e [ 40 (5) 7 (B@—s0)p0)
= (4,00 (2) (Bto)—p 341 _,

— (— 1)l (g ()b ()} () A, (a0)

=o(l) as w-—>o0; (1)
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and observe that, for w > > a,
@ (4)" (-0 $0)

= {1_(;‘;_} YD (1)

+e) S (I g () Be—s0r. @

In virtue of T (iii) and ( 5 | %t (t) A, () |dt < o0, and hence, by

Lebesgue’s theorem on dominated convergence,

jw {149":’(—%}}%1)@) Ak(t)dt—>jj JoHD() A, (H)dt as w—>o0.  (3)

Further, by Lemma 1,
@aepennn(2)" Be) g0 B=1,2 .t 0>>0)
is a linear combination of terms like
Jw, ) = Gl b0 ge) -0y 1 gowy, (4

where the ¢’s are non-negative integers and 1 <{r <«, 1 <p <in, ¢, =1,

Since ¢, = 1 if p =« + 1, we use T (ii) and Lemma 2 to deduce that there
are constants M, N such that, for w >t > a,

[, ] < M@t | e g00)| Bo oy T (Hoyd0)*
= M{ (@) GO [0 OP G OF | 420
< 4705 O 690
Hence, for fixed y > a,

jylf(w: t)|dt—>0 as w0,
and, by T (iv),
j |f(w, t)|dt = 0(1) for w>=a.
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Consequently, by Lemma 3,

Swf(w, Ni—=A,()dt—+0 as w— o0,

and this, together with (1), (2), (3) and (4) enables us to deduce () as

re

4

quired.
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