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ON CESARO AND ABEL SUMMABILITY FACTORS
FOR INTEGRALS

DAVID BORWEIN AND BRIAN THORPE

1. Introduction. Many results have been obtained about factors trans-
forming integrals summable by ordinary and absolute Cesaro methods of
non-negative orders into integrals summable by such methods (see [4], [2],
(6], [3]) and also into integrals summable by the ordinary and absolute
Abel methods (see [7] ). Since the Cesaro summability methods (C, «) and
|C, af for integrals are defined for @ = —1, it is natural to try to extend the
above mentioned results for @ = 0 to the case —1 = « < 0. In this paper
we restrict attention to the simplest case a = — 1, and classify the
summability factors from (C, —1) and |C, —1| to (C, -1, |C, —1,
(C, N, |C, A, 4 and |Al, where A = 0 and A denotes Abel summability.

2. Notation and definitions. Let M(a, b) and L(a, b) denote respectively
the Banach spaces of Lebesgue measurable essentially bounded functions
on (a, b) and Lebesgue integrable functions on (a, b). Let M = M(1, c0),
L = L(1, o0),

Mg, = N MQ,n) and L = 0 L(1, n).

1=n<co =n<co

Denote by BV the Banach space of functions of bounded variation over
[1, co), by BV(0, oo) the space of functions of bounded variation
over (0, co), and by BV, the space of functions of bounded varia-
tion over [1, n] for every finite n > 1. Suppose throughout that A=0.
An integral [{° x(1)dr is said to be
(i) summable (C, —1) [IC. —1|]if x € Ly, and

(H y@)= fl x(u)du + tx(t)

is equivalent to a function tending to a finite limit as ¢ — oo [€ BV];
(i1) summable (C, A) [ |C, Al ]if x € Ly, and

ﬁ(1 - %)Ax(u)du

tends to a finite limit as ¢ — co [€ BV];
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454 D. BORWEIN AND B. THORPE

(iii) summable 4 [ |4| ] if x € L, and

oo
fl e *“x(u)du

is convergent for s > 0 and tends to a finite limit as s — 0+
[€ BV(0, 0)].

The symbol (C, —1) will also be used to denote the linear space of
functions x such that I x(t)dt is summable (C, —1), and a similar use
will be made of the symbols |C, —1], (C, A) ete. The set of summability
factors from X to ¥ will be denoted by (X; Y),ie, k € (X; ¥)if and only
if xk € Y whenever x € X,

A summary of the main results established is given at the end of the
paper.

3. Preliminary results. Integrating (1) yields the identity

; fi y(u)du = ,/.i x(u)du

from which it follows that x e (C, —1) if and only if x € (C, () and

ess lim rx(f) = 0. )

—c0
Likewise, it follows that x € |C, —1| if and only if x € |C, 0| and
tx(t) € BV. The inverse transformation to (1) is given by

df1 [t
x(1) = E;(; f] y(u)du) fora.a. t = 1.

If the function y defined by (1) is in B Vioc» then the inverse transformation
has the following alternate form

1 t
x(t) = y_fz—) + % .[1 udy (u).

Moreover, given any function y & BV}, the function x defined by
1 f1

@ x0) =% [ wyw
t

satisfies (1) with y(r) — ¥(1) in place of y(¢). Hence if y € BV, and y(¢)
tends to a finite limit as 1 — oo, then (2) defines a function x = (C, =1}
and if y € BV, then x € |C, ~1].

LEMMA 1. Ler

il = } f: k(udu, fyt) = 1 ftm k(’;)du fort =1,

u
where k L. Then
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(@) f, € Mifand only if [, € M;
(b) f; € BV if and only if |, € BV.
=

Proof. (a) Suppose that f; € M and that 7 = ¢ = 1. Then, on
integration by parts,

1 T 1 ¢ Tfl(u) ]
Tt 1 i s [

Letting T — 0o, we deduce that the integral defining f,(¢) converges and
. that

= fiw)
& Ao = o+ [ 1%,

u

d hence that f, € M. o '
anConversely, ifzf2 € M then the integral defining f, is convergent by

hypothesis and integration by parts yields, fort = 1,
. 9) t
L [ g, 2 foo —k(u)d = Bty +—= f Sfolu)du,
(4) f](t)=;fluu2du—f i =3 u — fH(1) )

d e M.
an(b;(gl{;:pose that f; € BV. Then (3) holds, and to show that f, € BV we

have to show that

Y(t) =t f(:ofl(;‘)d“ < B

7 B
Now

wo = fon(5)e

and hence, if 1 = ¢ <t < ...

o= [ 3 ) (12

i i=1

[T e,

< t,, then

=

lIA

so that y € BV. .
Conversely, if f, € BV then (4) holds and so f; € BV since

¢ 1
L s = [ s < v

provided we define fo(u) = 0 for 0 = u < 1.
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LeMMA 2. Let

1 ¢ oo
&) = B fl udk (u), g,(¢) = gft

B om0,

u

where k € BV,,.. Then
(a) g € M ifand only if g, € M,
(b) g, € BV if and only if g, € BV.

The proof is similar to that of Lemm i
al.A i
Lemma 208 is the followton n immediate consequence of

CoroLLARY. Let k € BYV,,.. Then
1 [t ‘
r f] uldk(u) | € M

if and only if

ZITOMGM.
u

Parts (b) and (c) of the following 1
s prend ) wing lemma are due to Tatchell [8, Theorem

LemMA 3. Sy th .
thebdisorm ippose that y € BV, and a function w on [1, oo] is defined by
. (o]
(5) W(l‘) e f] K(t, u)dy(u)

where, for every t = 1, K(t ;
= , U) is bound i ;
o T 2l » K(1, u) ed and continuous as a function of u

(a) If w € M whenevery € B :
ol 1 s v 1. Y V, then there is a constant H such that, for

IK(t, u)| = H.
(b)Ifwe L ,
il 5 if " whenever y € BV, then there is a constant H such that, for
[ee]
fl \K(t, u) |dt = H.

i (?) If w(t) tends to a finite limit as t — co whenever y(t) tends to a finite
imit as t — oo, then there are constants c, to, H such that

[e o]
(6) fc |d,{K(t, u)| = H fort = 1,
(N K@ w)| = Hfort Z 1y, u =1,
and, for every u = 1

E

(8)  K(1, u) tends to a finite limit as t — oo.

e g

-

SUMMABILITY FACTORS 457

Proof of (a). Using Lemma 6 in [8], with the Banach space B taken to be
M, and the arguments in the proof of Lemma 1 in [8], we observe that the
hypotheses imply that (5) defines a bounded linear operator from BV to
M. Hence there is a constant H such that

ess sup ()| = H(Ly(D| + [T e

for every y € BV. Téking the special case

)#{Oifléuév,
) = 1ifv < u,

v

we get that, for every v = 1,

ess sup |K(t, v)| = H,
=1

and this is the required result.

The arguments in the proof of Theorem 3 in [8] can be used to

establish:
LeMMA 4. If, for every t > 1, K(t, u) is continuous as a function of u on
[1, 1], and the transform

4
wity = [ Kt @)
defines a functionw € BV whenevery & BV, then there is a constant H such
that, for all u = 1,

|K(u, u)| + f:o |dK(t, u)| = H.

4. Summability factors from |C, — 1).

TuroreM 1. In order that k € (|C, —1I; (C, X)) it is necesséry and
sufficient that

1 4
©) k€ Ly and - fl k(u)du € M.

Proof. Sufficiency. Suppose that (9) holds, that x € |C, — 1|, and that y
satisfies (1). Then, using the inverse transformation to (1), we have that,

fort = 1,

f: x(w)k(w)du = y(1) ftl k—f;ldu i f: %L;—)du ft: vay(v).
By Lemma 1(a), (9) implies that

f?o U %k (u)du
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is ;?n}rerieg; anc; so xk € (C, 0) if and only if the second term on the
1ght-hand side of the above identity tends to a finite limi
Sy v inite limit as ¢t — co. By

fl %d“ f1 vy (v) = f; vy (v) ff %du

= _/.2 vdy(v)(fjo %du = foig)du),

u
and, using (9) and Lemma 1(a),

' < k(u) e
_[I vdy(v)fv 2 du| = H f] ldy () |,
where
. oo
H = sup (v k(—;t)du < oo.
v 1 v U
Hence

f: vdy(v) foo u” %k (u)du

tends to a finite limit as t — co. Also

f: vy (v) Oo%a’u = ?‘f? vdy (v)

1
:H’)’(f) i —;ij(v)dv

t

_>OB.SE-->OO’

since y(t). tends to a finite limit as t — oco. Thus xk € (C, 0) C (C, A)
Necessity. Suppose k € (|C, —1{; (C, A)). For any ¢ > 1, T

x[]‘t] = IC’ 71|
and hence
kxpg € (CA),

so that k € L, .. Given an : .
‘ y ¥y € BV, if we def
IC, —1] and, for t = I, ine x by (2) then x €

w(t) := '/‘rl (1 = ‘—;)Ak(v)x(v)dv
= f: (1 = ;)Akf;)dv f: udy(u)
= f] udy () ff (1 - ;)Ak—g—)dv

5 : A ;lzu

H g

e S eSS

SUMMABILITY FACTORS 459

by Fubini’s theorem. Thus w € M whenever y € BV, and so, by Lemma
3(a), there is a constant H such that, for allu = 1 and a.a. 7 > u,

u f{ (1 - ‘—;)A%dv\ < H.

Since the left-hand side is a continuous function of ¢, the inequality must
in fact hold whenever r = u = 1. Consequently, for 1 S u = U =1

u f: (1 = E)Ak—g—)dvl = 2H.

Letting ¢ — co we obtain, by dominated convergence, that

ufU@dv] = 2H

u oyt

and hence, by Cauchy’s criterion, that

fu v 2k (v)dv
= )

is convergent. Now let U — oo to obtain that, for all u =

 k(v)
—=d
v Y

u =2H

u

and hence, by Lemma 1(a), that (9) holds.

THEOREM 2. In order that k € (|C, —1|; (C, —1)) it is necessary and
sufficient that k € Ly, and

(10) k € M(c, 00) for some ¢ = 1.

Proof. Sufficiency. Suppose that k € Ly, and that x € |C, —1|.
Then
lim tx(f) = 0
—co
and, by Theorem 1, xk € (C, 0). Thus if (10) also holds, then
ess lim tk(#)x(z) = 0

—00

and so xk € (C, —1).

Necessity. Suppose that k € (|C, —1};(C, —1)). That k € L, follows
from Theorem 1 since (C, —1) C (C, 0). Assume (10) to be false. Then
there is a strictly increasing sequence of positive integers {n;} and a
sequence of open intervals {;} such that m{I) < 1,I; © (n, n;y ) and

ess sup |k(t) | > o fas = T Dy o
tel;

Define a function x by setting
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1
~f e
x(t) = 12! ortel,i=1212...

0 for all other t = 1.

Then tx(¢r) € BV and
oo o0 fo'e]
flx(r)|dr=2ljﬂ< 1_
I i—1 2 it ,‘E 2 =1

so that x € |C, —1|. On the other hand

L

es:ses]up ltx(Dk(@)yl =1 fori=12,..

and so xk & (C, —1). This contradicts the hypothesis that
ke —1:(C —D),
and thus (10) is necessary.

THEOREM 3. In order th =13 it
Wi atk € (|C, —1|; 4) it is necessary and sufficient

Proof. Sufficiency. This follows from Theorem 1 since 4 is regular

Necessity. Suppose that .
%€ Je —il ppose that k € (|C, —1|; 4) and that s > 0. Then, for all

f e x(v)k(v)dy

is convergent so that e " —1f;
oy at e k(v)‘ e (|C, —1]; (C, 0)). Hence, by Theo-

e_”k(v) & Lloc
sothatk € L iti i
o loc- In addition, by Lemma 1(a), there is a constant H_ such
0 e ki)
(11) tVfV e va_zd" = H, forall V = 1.

Suppose now th ; :
Ly aty € BV.If x is defined by (2), then x € |C, — 1| and, for

i —38Y v Y
.[1 e x(Wk(v)dv fl e—"@dv .[1 udy (1)
v

- [l [T )4

by Fubini’s theorem. Further, by (11),

PSS R
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. , N i
lim f] udy (u) fV efs"—(‘zi)—dv =0 -
v

V—co

since, on integration by parts,

o
fl udy(u) = o(V) as V — oo.
the above identity and observe that the

Hence, if we let ¥V — oo in
limit since xk € A, we obtain

left-hand side tends to a finite
[e.e] (e ] oo k

[7 emnomons — [} wv [ e
i v

the left-hand side being a continuous bounded function of s in (0, o0)
whenever y € BV. It follows, by Lemma 3(a), that there is a constant H

such that for all u = l1and aa. s >0

[e7e]
u f e“”lc—(;—)dv
u

v

= H

By continuity the inequality holds for all s > 0, and henceif 1 S u=U

then
U
u f eﬂvﬂ:—)dv\ = 2H
L v
and so, letting s — 0+,
Uk
u f —(z—ldv\ = 2H.
U oy
Hence, by Cauchy’s criterion,

fc;o v 2k(v)du

is convergent, and letting U — oo we obtain that, for all u
e k

u f ’(—;—)dv‘ = 2H
L

so that, by Lemma 1(a), (9) holds.

THEOREM 4. In order that k € (G,
sufficient that

= 1,

—1|; |C, —1]) it is necessary and

1
(12) k€ M N BV, and lt fl Wdk(u)| € M.

Proof. Sufficiency. Suppose that (12) holds and that x € |C, — 1|. Then
x € L and k € M imply that xk € L. In order to show that xk € |C, —1|
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it remains to prove that tx(1)k(r) € BV. Usi i
. Using the -
to (1) we have, for ¢ = 1 g inverse transformation

H) k(t) k(t)f iy ()

Wherey € BV. Since

‘d(k(t))’ - f;o Ikg)ldt+ ffo Idki(r)| e

by (12) and the corollary to Lemma 2, it remains to show that Yy € BV

where
k(t t
(1) = T) f] udy (u).

Letl =1 <1 < <t,.Then, fori=1,2,...,n
Y& — v(to) =« + B

x()k(t) =

where
_ (k@) k@Y [

« (-5 [ e

and
k() (4 j

B = e f,r__l udy (u).
Now

Ej 1B = K 21 A _ udy@) |

b o
éKfl ldy (u) | éKf, ldy (u) |

where

K = su;l) 1k(t)|.
=

Further
n

é ol = X

i=1 i=1

lIA

k(tg) k(ti— ) i1
. j:%! f, uldy (u) |

%

= f T udy () | E

k(1) k(:,_l))
Y tioy
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where i, is the index such that ¢, ., < u =4

5 Pt < f72)

1
k

_Butforl =u=t¢,_

f o |dk(7) |

= « Ty
which is bounded for u = 1 in view (12) and the corollary to Lemma 2.
Hence there is a constant ¢ such that

ghf(m— v | = 2|a|+2|m_s.c

,and soy € BV.

for all choices of £y, &, - . -,
—1J; |€, —1|). For any ¢ > 1,

Necessity. Suppose that k E (IC,

X[1,0] € |C, —1i
so that
kX[l,[] (= |C, _1I.

Hence uk(u) € BV, and so k € BV, Given any y € BV, define x by
(2) so that x € |C, —1| and, for t = 1,

k 14
w(t) = tx(Dk() = —(;) fa udy (1)

Then w € BV whenever y € BV and consequently, by Lemma 4, there isa
constant H such that, for all u = 1,

kel +u [ d(k—(j—))\ =,

and so
S [ 4] 530

It follows, by the corollary to Lemma 2, that (12) holds.
—1}; |IC, 0|) it is necessary and

f°° k@) |

THEOREM 5. In order that k € (|C,
sufficient that

1 t
(13) k&€ Ly, and - fl lk(u) ldu € M.

Proof. Sufficiency. Suppose that (13) holds and that x € |C, —1|. By
Lemma 1(a) there is a constant H such that, for all 1 = 1,
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% | (u
! f: 2) Idu = H.

U

Using the inverse transformation to (1), we have, for u = 1

k u
x@ik(w) =y + £Q [Hip

where y € BV. Hence

f] |x () (u) |du = H|y(1)| + f?o tldy (1) | fjo |k(1;) [du

U

‘ = Hy()| + H fl ldy(t) | < oo.
Thus xk € |C, 0] = L.

fOlII‘ie‘::SS{)ityﬁSluppose that k € (|C, —1[; |C, 0]). Since |C, 0] c (C 0) it
» by Theorem 1, that k € L, . Given any y € BV, define b 2
sothat x € |C, — 1| and for t = 1 , ke

w(t) 1= f] x(v)k(v)dy

- f: %d" f] udy (u)

- [ [ 5,

Vv

Then w € BV wheneve
ry € BV .
H such that, for all u Eyl, and so, by Lemma 4, there is a constant

ek
o [T EQ sy < i

v

By Lemma 1(a), this implies (15).

I'HEOREM 6. In order that k - Ld
g (= (‘C, 1[ iC M) here X > 0 it |
i 3 s t
necessary and Sl{fﬁaent that k € Lloc and that there be a constant H ;ucl;

that, for all t = 1,
oo du U
(14 tfr AT fr (u — V)A_'@dv/ = H.
Vv

Proof. Sufficiency. It i i I
Iy y is shown in [3] that a € |C, A| if and only if

oo du
(15) f] u?\-H

f, (@ — V)Aflva(v)dv

< 100
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Suppose that x € |C, —1| and that (14) holds. As before we have, for
u =1, :

k k “
16 xak =y + 2 [l

where y € BV. It follows from (14) with 7 = 1 that (15) holds with
a(v) = vfzk(v) so that u_zk(u) € |C, Al. To show that the other term on
the right-hand side of (16) is also in |C, Al we observe that, in view

of (14),
U -~ k v ‘
fl @ — v l—%dv f‘ tdy(t)\

ﬂ tdy (1) fi: (u - v)"‘"‘ﬁ(;"ldvl

fi: (u — v)Aglk—E’de‘

du
1 u?\-H

e
IR

= [} w0l <o

Thus (15) holds with a(v) = x(v)k(v), and so xk € |C, Al
Necessity. Suppose that k € (1C, —1l; |C; A). Then

ke (Ic, —1;(CN)
and so, by Theorem 1, kK € Ly, Given any y € BV, if we define x by (2)
then x € |C, —1| and, fora.a. 1t = 1,

1 [ _
w(t) i= T f1 (t — v vx )k ()dy
1 [ _k v
= X f‘ (r — ) l——i}v)a'v f] udy (1)
1 [t ‘ _k
= 1 .[1 udy (u) f « — ‘—(v")dv

- 7 ke wairw

lIA

where

. t
K(r,u):t—x%fu(r—v)

whenever 1 = u = ¢ and the integral exists in the Lebesgue sense, and

K(t, u) = 0 otherwise. (Note that the integral may fail to exist on a set of
measure zero when 0 < A << 1.) Thenw € L whenever y € BV and so, by

Lemma 3(b), there is a constant H such that, for all u = 1,

A_lli(ﬂdv
v
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Hgme _ f°° dt
| K@ w)ldt = u . FFT

i.e., (14) holds.
THEOREM 7. If A = 1 then
Proof. For any A = 0,
(IC, =1 IC, A < (IC, =11; (G, M) = (IC, —1]; (C, 0))
by Theorem 1. To complete the proof we have to show that
(IC =1 (G, 0) < (I, —11; IC, 1]),

since |C, 1] € |C, A\ for A = 1. B
, = 1. By Theorems 1 and 6 thi
have to show that (9) or, by Lemma 1(a), that k € L ;nrclllcans that ve
oC

* k(u)
() K ' ;z_du‘ =H fort=1

.ﬁ“*ﬁfﬂﬂﬂwL
Vv

implies that
[e2e]
(18) ¢ f ) d_g
U

H and H, being constants. S
s. S .
b s, uppose that (17) holds. Then, on integrating

“ k(v) ® L(w co
f gy W= %dw —u —k(f)dw
W

“k(v)
.[r dvlng fort =1,

v

Vv 14 w u

u Dok
+fr dv fv (v;)dw

w

and hence, by (17), we have, for t = 1

Oodu uk(v
tf:;t_Z,/‘r )dv

v
i.e., (18) holds.

(o8]
=om1 | d_g‘+Hff°°@f”@
U fuz tv

= 2H + H = 3H,

Tueorem 8. (|C, —1J; |4]) = (|C, —1]; (C, 0)).

P
roof. Suppose that k € (|C, —1; (C, 0) ) and that x & |C, —1{. Then

by Theorem 7, xk € (C, 0
e (C,0) N |C, 1], and so, by Theorem 3 in [7], xk € |4|.

(IC, =1 (€, 0)) < (IC, =1; [4]) € (|C, —1]; A).
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Further, by Theorems 1 and 3,
(Ic, =11; 4) = (IC, =11 (G, 0O )y
and the required identity follows.

5. Summability factors from (C, — 1).

TueorREM 9. In order that k € (46,
sufficient that

1 [t
(19) k € My, and 2 fl k(u)du € BV.

olds and that x € (C, —1). Let

—1); (C, A)) it is necessary and

Proof. Sufficiency. Suppose that (19) h
1 t !
alt) = %(; f 1 k(u)du) Cand  BQ) = f | a(u)du,

so that, for a.a. t = 1,
(20) k() = ta(t) + B(1).
By (19), & € L N My, and B € BV. It follows, since

ess lim 1x(t) = 0,

00
that
tx(De(t) € (C, 0)
and, since x € (C, 0), that
xB € (C,0).
Hence, by (20),
xk € (C,0) € (C,N).

Necessity. Suppose that k € ((C, —1); (C, X)). For T > 1, if
x € L(1, T) and x(t) = Ofort > T, then x € (C, —1) so that xk € (C,N)
and in particular xk € L(1, T). Hence, by a theorem of Lebesgue, it is
necessary that k € M,,.. Now suppose that y € BV, and that y() tends
to a finite limit as ¢ — oo. If x is defined by (2), then x € (C, — 1) and, as
in the proof of the necessity part of Theorem 1, for ¢t = 1,

wit) 1= f: (1 - ;)Rk(v)x(v)dv = f?o Kz, u)dy ()

where

t A
uf (1~")ﬂ;—)dv fl1=ust
K(t, u) = ¥ /v

Oifu>1t.
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Then w(z) tends to a finite limi
te limit as ¢ — oo whene
t tlends to ver y € BV,
;ﬁidigto : flp1te limit as # — co. Hence, by Lemma 3(c), K sati;‘ffesr(lg)y(f/)
)- As in the proof of Theorem 1, (7) implies that 1

f[ v 2k (v)dy

1s convergent, so that, for u = 1

’

lim X = u k) =
t (tbu) =u . _dev =: v(u).
Now, by (6), whenever ¢ = uy < uyp < ...<<u andr = 1, we have
$73 = 0

ld

2 K¢ u) — K(t,u,_)| = H,

i=1

and hence
2 ) = v, )| < B

It follows that y € BV and $0, by Lemma 1(b), (19) holds.

THEOREM 10. In order that k €
3 . : C - ; h ' -
sufficient that (19) hold and that k (E( ﬂ,l A5 SRR eqmanyy oo

Proof. Sufficiency. Su
o . duppose x € (C, —1). Then, b
implies that xk € (C, 0), and k € M i pligs thatn’ y Theorem 9, (19)

ess lim x(0)k(t) = 0.
—o0

Thus (19) and k € M imply that xk € (C, —1).
Necessity. Suppose & € ((C, —1); (C, —1)). Since
IC, =1l € (C, = 1) c (C, 0),

it follows from Theorem 9
that £k € M,
k € M(e, co) for some ¢ = 1. Hence k Ehﬁff.and o T 2

THEOREM 11. In order th
: t k — 1y P
sufficient that (19) hold. at k € ((C, —1); A) it is necessary and

Proof. Sufficiency. This follo
: : ws from Theorem 9 si
Necessity. Suppose that k € ((C, —1); 4) and th:tc j SEOO)TieI:-

e "k(v) € ((C, —1); (C, 0))

so th

A :, lc:;y Theore'm. 9, k € M. Suppose now that y € BV, and th

i (;1 s to a finite limit as t+ — oo. If x is defined bl;c(?.) th 5
(C, —1) and, as in the proof of the necessity part of Theorem> 3 .
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90 _ o0 b k(v)
s i = ¥ 2 d.
fl e Vx(v)k(v)dv fl udy (u) fu e ") dv

Since the left-hand side tends to a finite limit as s — 0+ whenever

€ BV, and y(z) tends to a finite limit as 7 — oo, it follows, by Lemma
3(c), that (6), (7) and (8) hold with
K(t,u) =u f:o e"’”k—g)dv.
It follows from (7), as in the proof of Theorem 3, that
lim K(t, u) = u fm kg)dv

1300

and then from (6), as in the proof of Theorem 9, that

u fu v 2k (v)dv € BV.
Thus, by Lemma 1(b), (19) must hold.
TueoreM 12. In order that k € ((C, —1); |C, 0] ) it is necessary and
sufficient that
k(1)
@) k€ My and —* €L

Proof. Sufficiency. Suppose that (21) holds and that x € (C, — 1). Then

there is a number ¢ = 1 such that 1x(¢) € M(c, o0), and hence
k(1)

f(]m Ix()k(2) |ldt = f: |x (k) |dt + f tx(t),t— dt < oo.

Thus xk € (C, 0).
Necessity. Suppose k € ((C,
so that k € M, by Theorem 9. Let {a

numbers decreasing to 0, and define

o0
<

—1);1C, 0). Then k € ((C, —1); (C,0))
.} be any sequence of positive

_1\#
x(r)=(——lt)—~aﬁ forn=<=t<n+1ln=12...
Thentx(t)—%Oast—>ooand,for2 SEN=ET<N+I,

T - 1 i

fl x()dt = > (fl)"anlog(l + —) + (—I)NaN log(—)

n=1 n N

so that x € (C, 0) by Leibniz’s test. Hence x & (C, —1) and so
xk € |C, 0, e,
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oo "1 k(s . since

S o, [ EOL, .

n=1 2 t fl |, (£)e() |dt < oo.
Since {a,} could be any sequence decreasing to 0, we must have Thus

- :
§ k() ]d; [oo lk(t) rdt - I(s) = fl e 'x,()B(t)dt € BV(0, o0).
" o = 1

=i d t Further

(otherwise f ) f !
et | L= fy 50 ) e
a, = l/(] + fﬂ —(;ng)

oo o _aBlt)
{ =5 fl y(u)du fu e "—rdl‘,

the interchange in order of integration being justified since

would give an example of a function x € (C, —1) for which xk & |C, 0|).
Thus (21) must hold.

The proof of the next theorem is an adaptation of the proof for the

, - = B0,
series analogue given in [1]. ; v du | e p
THeOREM 13. In order that k < ((C, =1); |4]) it is necessary and 1 [ o
sufficient that (21) hold. = sup (_ fl ly(v) Idv) : fl e "|B(t) |dt < oo.
] =1 \u
Proof. Sufficiency. This follows from Theorem 12 since IC, 0] C |4]. o
Necessity. Suppose k € ((C, —1); |4| ) and define a(z), B(z) as in (20). Next

Since [4| C A4, we have, by Theorem 11, thate € L N My,.and 8 € BY.

Ii(s) = I(s) + I3(s)
Suppose that s > 0 and that x € (C, —=1). Fort = 1, let

t where
Q) x() = f L X@du, y(1) = x,(1) + tx(0). oo fw e
——(B(t) — B(u))dt,
- I(s) = s fl yadu |, — (B()
'co o0 oo B oo o0 oS!
.[1 e x(k()dt = f] e x()B(t)dr + fl e tx(t)a(t)dr. Iy(s) = s f] y(u)B(w)du fu . dt.
The first integral is of bounded variation over (0, o0) by hypothesis, and so
is the final integral since We prove first that I, € BV(0, c0). Observe that )
oo " ey ® 9 —ihyge = =
_[1 l2x (t)a(r) |dt < oo. fo _:_S(Sefsr) i fo g(se s — i as(se )ds "
Hence ;
co so that y
I(s) 1= f R ; ; oo £ ;
(s) | € “x(1)B(t)dt € BV(0, c0) foo ) lds = 2 fl |y () Idu fu IB(t) — B(u) I?
On integration by parts, 0 e
00 o o dt [*°
I(s) = f: x1(De” Na(t) — sB(t) )dt Z 1 f; |y(u) ldu f 2 f [dp() |
‘ e
and

o |

R e Tl 22 [P gy [ 1yl < oo
f] e “x(Da(t)dt € BV(0, co) ! 1 v

% et e
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Thus I, € BV(0, o) and so I; € BV(0, o) whenever x € (C, —1). For

u =1, let
a j‘m se st ) foo e—st _
ws.(u)*ﬁ( ) dt) = B — e %
so that
oo
56 = [ yBm,
and hence

fo ds f; y(u)B)w,(u)du| < co

whenever y € B where B denotes the Banach space of bounded
measurable functions z on [1, co) such that z(¢) tends to a finite limit as
t — co, the norm being given by

llzll = Sp lz(2) |.
=
This is so, since if y € B and x is defined by
x(r)fﬂ(lf{()d)f t>1
=2\ , Y(w)du ) for a.a. \

then (22) holds for a.a. t > 1 and x € (C, —1). For n = 1 and each fixed

s > 0, define a continuous linear functional f,:B — C by

L) = [ yBem, s

Since, for every y € B,
Iy(s) = HILH;D () = f] y()B(u)w,(u)du,
this defines a continuous linear functional on B for each fixed s > 0.

Hence, by Lemma 1 in 8], since I € L(0, co) there is a constant H such
that, for every y € B,

(23) fo. ds f] y()Buw (w)du| = H sup Ly (u) |
Now take
‘a(uﬂsgn Bu)for 1 = u = m,
y(u) = a(u)
0 for u > m,
where
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oo —TQ2 + i)
a(u) = fO SJWS(u)dS = -ZFT—/ foru = 1.

Then
TR + i ™ |B(u) | " d
u_if’ﬂ f} —:—du = fl a(u)y(u)p(u)du

= fr]n y(u)B(u)du f;o Siws(u)ds
= 7 sas [ yaoem, o
a

=H sup ly(w)| = H

m=

A

S yetm,

by (23), the inversion in order of integration being justified since

m co !
[0t [ s =2 [} B au < oo

It follows that

IT@ + i)| foo Iﬁ(u)idu < H
1 u

and hence, by (20), that (21) holds.
TueoreM 14. ((C, —1); 14]) = ((C, —1); IC, A
Proof. Suppose k € ((C, —1); |C, A|) and that x € (C, —1). Then
ke ((C —1: (G X)) = (€, ~1: (G, 0),

by Theorem 1. Thus xk € (C, 0) N |C, A| and so, by Theorem 3 in [71,
xk € |A|, so that

k€ ((C, =) 4l
Hence
((C, =1 |G, A € ((C, = 1); 14]).
Further, by Theorems 12 and 13,
((C, = 1); 14) = ((C, =1 1G, 0D < (6 =1y IC, A,

and the required identity follows.
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THEOREM 15. In order that k € ((C, —1); |C, —1|) it is necessary and
sufficient that k(t) = 0 for all t = 1.

Proof. Sufficiency. This is immediate provided we adopt the convention
that x(#)k(¢) = 0 whenever k(t) = 0 even when x(¢) is infinite or
undefined.

Necessity. Suppose k(c) # 0 for some ¢ = 1. Define x(#) = 0 for¢ = 1
t # ¢ and ;c(c) = co. Then x € (C, —1) but xk ¢ |C, —1] since ’

tx(t)k(t) & BV.
In Theorem 15 the necessity for k& to be identically zero is a trivial
consequence of the definition of |C, —1|. The following theorem shows

that the condition on k cannot be significantly relaxed by enlarging the
space |C, — 1| in a natural way.

THEOREM 16. In order that

f] x(uw)k(u)du + tx(t)k(t)

be equivalent to a function in BV whenever x € (C, —1) it is necessary. and
sufficient that

(24) k(1) =0 foraa t= 1l

Proof. Sufficiency. This is immediate.
Necessity. Assume (24) to be false. Then there is a strictly increasing
sequence {c,}, a sequence of positive numbers {¢,}, and a sequence of
measurable sets {£, }, such that ¢; = 1, and, forn = 1, 2, ...

k()| Z ¢, fort € E, C (c, c,iq) and 0 < m(E,) = 1.

Let r, be an even positive integer such that-

=

€1, = A,
and define
En,! = (Cn,i-—li cn,i) N E?'l
where
C?’i = Cn,O < Crt,l < ... < Cﬂ,l‘n = CF’I‘VLI’

the numbers ¢, ; being chosen so that

is constant fori = 1,2,...,r,.
Now define
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gf—lieﬂ fort € E, i =
x(1) = ntk(t)

0 for other ¢

v

Then
[N
fc x(t)ydt =0
and, for (& <T< Cat 1>
T E
I coar] = ED <

so that

-
f} x(t)dt — 0 as T — co.
Also,

lix(1)| = 1/n forc, St < ¢ty

and so

tx(t) >0 ast—co.
Hence x € (C, —1). On the other hand if y(?) = tx(t) k(t) foraa.t = 1,
then the variation '

ze}lrﬂ' = 2
= i)

Vo)) =

and so y & BV. Thus (24) is necessary.

Remark. Theorem 12 is a special case of Theorem 14 and is not needed
to prove Theorem 14. The proof of Theorem 12 has been included since it
is much simpler than that of Theorem 14 which uses the necessity part of

Theorem 13 in an essential way.
6. Summary. Collecting the above results we obtain:
L (IC —1:(CN) = (IC —1; 4)
= (lc, —1;1G A + 11)
= (IC, —1|; 4l) =: S,
and
ke Seke Ly

and
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0
1 fr
= ] kwdu € M. ' L[
-; 1 k(u)du = BV-
I, ({C, =i (6, 8)) = —1); : j
" (G A) =((C, —1);4) =: T, IX. k<€ ((C,—1) IC, —1|) & k(r) = 0 forallt = 1.
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