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C O N D I T I O N S  F O R  I N C L U S I O N  B E T W E E N  
N O R L U N D  S U M M A B I L I T Y  M E T H O D S  

D. BORWEIN and B. THORPE (London, Canada) 1 

1. Introduction 

Let p = {P,},,>-0 denote a sequence of complex numbers, let P, = ~ Pk and let 
k = 0  

p(z )=  Zp.z". A sequence {s~},_>0 is N6rlund summable (N,p) to l if P , ~ 0  for 

n 

n=>0 and lim Zp~_:,/P,=l. We use the same notation with other letters in 

place of p, P. It is well known that necessary and sufficient conditions for (N, p) to be 
regular (i.e., finite limit preserving) are 

(a) ~ [P~I = O(IP.I) and (b) Pn -~ o(Pn), 
v = 0  

cf. Theorem 16 of [2] where Hardy considers the special case p,-~0 so that (a) i~ 
automatically satisfied. In this paper we make a contribution to the solution of an 
open problem raised by Theorem 19 of [2] and mentioned explicitly on page 91 of 

[2]. In particular, we consider the question whether the condition ~ [kvl---O(lQ.[) 
V = 0  

alone is necessary and sufficient for (N,p) to imply (N, q) when P,=O(1),  IQni .-,0% 
both (N, p) and (N, q) are regular, the sequence {k,},~0 being obtained from the gene- 
rating function k(z)=q(z)/p(z). We can solve the problem completely for p(z) 
a polynomial, and for a wide class of functions p(z) with algebraic and logarithmic 
singularities on lzl = 1, but the general case leads to delicate questions that escape 
our analysis. 

2. The maia problem 

In Theorem 19 of [2], under the hypotheses that (N, p) and (N, q) are both regu- 
lar, Hardy shows that the two conditions 

(A) ~ Ik,,-,P,,l = O(IQ.I), 
V = 0  

(B) k, = o (an), 

1 Supported in part by the Natural Sciences and Engineering Research Council of Canada, 
Grant A-2983. 
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are necessary and sufficient for (N, p) to imply (N, q)~. Following his argument (for 
the case p ,~0 ,  q.->0) it is not difficult to verify that (B) may be omitted in the cases 
(i) [ P , ] ~ ,  (ii) P . = O ( 1 ) a n d  O,=O(1). In the remaining case, P ,=O(1)  and 
IQ . I -~ ,  it is natural to conjecture that (A) alone is necessary and sufficient for 
(N, p) to imply (N, q). To deal with this problem we consider regular N6rlund methods 
(N,p) with Pn=O(1). It is easy to see from the regularity conditions that this is 

equivalant to considering sequences {p,} with ~ lp . l<~,  p(1)#0  and P , # 0  

for n~0.  

Given ~ ]p.l<oo, p0#0  and p(1)#0,  the little N6rlund method (Z,p) is 
/1=0 

defined as follows: 

s. --,- l(Z, p) if lira ~ p._~s~ =/p(1) .  
t t ~ r  v = O  

This method is regular, and equivalent to (iV, p) when (N, p) is regular and P, = 0 (1). 
In this case (A) is equivalent to 

(C) ~ lk~l = O(IQ, I) 
v = 0  

provided (N, q) is regular. A simple direct argument shows that, provided (Z,p) is 
defined and (N, q) is regular, (B) and (C) are necessary and sufficient for (25, p) to 
imply (N, q). 

In Section 3 we prove that the conjecture is true when p(z) has no zeros on 
]zl=l, and in Sections 4 and 5 we investigate what happens when p(z) has zeros on 
]z] = 1 and when (N, q) is the Ces~tro method (C, c~) respectively. 

3. The case p(z)#O for lz l=l  

Before considering this case we show that (C) does imply that (B) holds in the 
(C, 6) sense for every 6>0. In fact we prove slightly more. 

THEOREM 1. Suppose that (Z, p) is defined, (N, q) is regular and 

(1) k. = O(IQ, I). 
Then 

k,, 0 (Z, v). 
Q. 

PROOF. Consider the identity 

n kv n ~" ],,,-v ( .  Q.-~) 
Jr ~ P~ ~ / 1 ----A---/�9 

v=O ~n--v x ' ~ n  J 

2 Since Hardy  only considers NSr lund  methods  with p.-~O, q . -~0 his conditions have to be 
modified in the obvious way. 
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The first term on the right-hand side tends to 0 by the regularity of (N, q). By the 
Weierstrass M-test, the series on the right-hand side is absolutely and uniformly 
convergent with respect to n since 

by (1) and the regularity of  (N, q), and so the second term on the right-hand side 
tends to 0 (by taking the limit as n ~ ~o inside the sum). This completes the proof. 

COROLLARY. UHder the hypotheses of  Theorem 1, 

k,, ~ o  (c ,a )  
Qn 

for every 6>0.  
t~ 

PROOF. Let tn= Z p,_~s~ where s~=k~/Q~. Then, by (1), s (z )=  ~s,,z" is 
v = O  n = O  

analytic in Iz]<l,  and ( t - z ) s ( z ) = ( 1 - z ) t ( z ) / p ( z ) ~ 0  as z-~l through real values 
in ]zt< 1, since t,-~0 and p (1 )#0 .  It follows that s,~O (Abel) and the result 
is now a consequence of  Thdorbme VI' (sequence version) of  [5] or Theorems 70 
and 92 of[2]. 

We give an example to show that we cannot replace 5 > 0  by 5--0 in the 
corollary. Let {p,,}, {q,} be defined from the generating functions p(z)=l+z,  
q(z)=(1-z2) -1 so that k(z)=[(l +z)(1-z2)] -~. Then Q(z)=(l-z)-lq(z) and so 
Q(-z)=k(z),  i.e., Q , = ( - 1 ) " k , .  tt  is clear that the hypotheses of  Theorem 1 hold, 
but  that in this case k,/Q,,=(-1)"~O(C, 6) for all ~ > 0  whereas k,]Q,~+O as 
n ~  o~. We remark that this example does not satisfy (C) and so is not a counterex- 
ample to the conjecture. 

I fp(z)  has no zeros on lzl = 1, we can use Theorem 1 together with the following 
tauberian result to establish the conjecture in this case. 

T~OgEM 2. Let (Z, p) be defined. Then (Z, p) sums no bounded divergent sequence 
i f  andonly i f  p(z)#O for lz]=l .  

PROOF. For the sufficiency of  the condition we first observe that p (z) has only 
a finite number of  zeros in IzJ < I (otherwise they would accumulate on the boun- 
dary). Let these be at the points z=z~ with multiplicity 2i ( i=1,  2, ..., l). Then, 

l 
by Theorem 1 of  [7], we have that s,-*O (Z,p) if and only if s,=t,+ ~fi(n)zi-" 

i=J. 
where {t,} converges to 0 andfi(n) is a polynomial in n of  degree (21-1). By Lemma 

I 
2 of  [8], {ZJ~(n)z/-"},,>=0 is unbounded unless f i ( n ) - 0  ( i=1,  2, ..., l). Hence the 

only sequences summable (Z, p) are convergent or unbounded. 
To prove the necessity of  the condition suppose p(f l )=0,  fi l l=l,  f i # l .  Since 

we are assuming ~ ,  Ip . ]<~ ,  p ( z ) =  ~p, ,z  ~ converges for lzl~=l and so p(f l )= 
n = O  1 ~ 0  

3 W e  use  M to denote  a posit ive cons tant ,  i ndependen t  of  the  variables,  tha t  m a y  be different 
a t  each  occurrence.  
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o o  

= Zpnfl"=O. It is now easy to see that the bounded divergent sequence {fl-"} is 
t~=0 

summable to 0 (Z, p), and the result follows. 

COROLLARY. Suppose that (Z, p) is defined, p(z)~O for [z 1 = 1, (N, q) is regular 
and (C) holds. Then (Z, p) implies (N, q). 

PROOF, By the remarks at the end of Section 2 it is sufficient to show that (B) 
holds. Since (C) implies that (1) holds, Theorem 1 gives that the bounded sequence 
{k,/Q,} is summable (Z, p) to 0, and Theorem 2 shows that it must converge to 0, i.e. 
(B) must hold. 

4.  T h e  case  where  p(z) m a y  have  z e r o s  on izl : 1 

A summability method based on a regular, normal (i.e., lower triangular with 
non-zero diagonal) sequence to sequence matrix A =(a,k) is said to be perfect if 

~,a,~=O (v=O, 1, ...) together with ~ l ,l< oo implies (n=0, 1, ...). 

See [4] and [9] for some basic properties. For the methods (N, iv) and (Z, p) we have 
a,~ equal to p,_,/P, and Pn-v respectively. It is clear that neither (N,p) nor (Z,p) 
is perfect ifp(z) has a zero in lz[<l (since, i fp(w)=0 with 0<[wl<l, then c~,= 
=P,w" is a non-zero term of an absolutely convergent series that satisfies the con- 
ditions for perfectness of (N, p), and likewise with e. = w" for (Z, p)). This obser- 
vation also settles an undecided question mentioned on page 707 of [4]. Hill asks 
whether the N6rlund method (N, p) with generating function p (z) = (1 + az)(1 - z)- ~ 
is perfect for a > l .  Since p(z) has a zero at z=  -1 /a  which is in lzl<l,  (N,p) 
cannot be perfect. 

THEOREM 3. Suppose that (Z, p) is perfect, (N, q) is regular and (C) holds. Then 
(Z, p) implies (N, q), 

PROOF. This follows directly from Theorem II. 8 of[9] with (Z, p) =A, (N, q ) -B,  
and the observation that (C) is necessary and sufficient for every sequence summable 
to 0 (Z, p) t ~ be bounded (N, q). 

The remainder of this section is devoted to finding examples of perfect (Z, p) 
methods. We introduce the notation {c,} for the coefficients of the generating func- 
tion c(z)=l/p(z). It follows from Theorem 8 of[4] that when (Z,p) is defined then 
e ,=  O(1) is a sufficient condition for it to be perfect. 

LI~MMA 1. I f  p (z) = 1 -- where ~ r l, [fll ---- 1, L >0, then (Z, p) is perfect. 

PROOF. We have p,=A2X-lf l  -~ where A 2 Z - l - ( n - 2 - 1 t  - ~  n I is defined from the 

relation 

(2) ( 1 -  z) ~ = ~ A2Z-lz  ", 
n = 0  

sothat ~ I p , ] < = ,  pQ=l and p(1)#0. Suppose that ~[c~.[<~o and ~ e ,p ,_ ,=0  
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(v=0, 1, ...). This can be written as 

Z . . A ; - ~ ; ~  ~-" = ~ Z A;-~;~(~.~ -") = o, 

and using the notation for fractional differences (see [1]) this is equivalent to 

A ~ ( . ~  -~) = o (v = 0, ~, ...). 

If  2CN, then an inductive argument (as on page 706 of [4]) shows that e~ =0  (v = 
=0,  1, ...). If  2C(N,N+I)  for NCN, then 

A~+l-~'(A;'(o~fl-~)) = AN+I(~fl -~) = 0 

by the absolute convergence of the double series involved, and so the result follows 
from the integer case. Thus (Z, p) is perfect. 

The following lemma is a special case of Theorem 5 of [4]. 

LEMMA 2. I f ( Z ,  m), (Z, l) are pelfect and p(z)=m(z)l(z) ,  then (Z,p) is perfect. 

LEm, A 3. I f  Z lr=l<~ and r(z)r for Izl<=l, then(Z, r) is perfect. 
n = O  

PROOF. By the Wiener--Levy theorem (page 246 of [12]), 1/r(z)= ~ t ,z  ~ where 
/ l = 0  

lt.[<~. Suppose ~ l~.l<= and ~'cx,,r,,_s=O (s'A-'O, 1, ...). Then, for 

v~O, 

0 = ts-v z ~ G r , - s  = c~, ~_~r,_~t,_v = ~ ,  
s ~ v  1 1 ~ $  n ~ v  s = v  

the interchange of order of summation being legitimate because the double series 
involved is absolutely convergent. Hence (Z, r) is perfect. 

As an immediate consequence of Lemmas 1 and 2 we see that, if (Z, r) is perfect 

and p ( z ) = ] ~ [ 1 - z |  ~ - ' "  r(z) where f l ~ l ,  ]fi~[=l, 2~>0 ( i=0,1,  n), then 
i=i t /~d ""' 

(Z, p) is perfect. Thus Theorem 3 holds for such a (Z, p) method. 

I f  p(z)=[1-----~)~[--fi~-log[1---~}} ~ where ] ~ 1 ,  [ill=l, LEMMA 4. 0 < 2 < 1  

and #ER, then (Z,p) isperfect. 

PROOF. If #=0,  this is a case of Lemma 1. Suppose #~0 .  Then we have 

p. ~ Mn -~-1 (log n)~ fl -~ 

by page 93 of [6]. (Although Littlewood gives this formula only for 2<0  we can 
establish the result in our case by using backward induction and the differential equa- 

tion on page 93 of [6].) Hence ~ fp.l<~, Po=l  and p(1)#0.  Moreover, c(z)= 
t l = 0  
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= l / p ( z ) : [ 1 - ~ J - ~  [--~-log [ 1 - ~ J J - ~  ' ~ ' n ' ~ so that again by Litt lewood's result 

c .  ~ M n  ~ - ~  (log n)-~/~-". 
Hence en = O(1), and so (Z, p) is perfect by Theorem 8 of[4]. 

By using Lemma 2, we see that ifp(z) is any finite product of functions of the 
form of those in Lemmas 1 and 4, then (Z,p) is perfect and Theorem 3 holds for such 
a (Z, iv) method. In view of the results above, it would be of interest to know whether 
every (Z, p) method withp(z) having no zeros inside the unit circle is perfect. A likely 
candidate for a counterexample can be obtained by considering generalized Laguerre 
polynomials. Let (r (z/ p(z) = 1 "  exp ~ for ~ ~ i, I~-I-- L ~.O~, 

so that 
p,,Z" = L,~(1) ~Mn (~12)-0/') cos (21/n+ 0) 

by (8.22.1) of [10]i where 0 is a constant depending only on a. Thus, ff e <  -3/2,  then 

]p,l < ~, po= 1 and p(1)#0. However, in this case (8.22.3) of[10] gives 
rim0 

c,,2" = L2~-~( - 1) --, Mn -(~/2)-(5/') exp (2]/n), 

and this leads us to suspect that (Z, p) need not be perfect but we are unable to 
prove it. 

THEOREM 4. Suppose that (Z, r) is perfect and that 

( ~ ) ~ ' [  @ [ 1 - z ] ] U ' r ( z ) w h e r e  ]• j l<l ,  vj(N 
j = l \  Otjl /=1  

( j=  I, 2, ..., m), fl,# 1, ]/~,1= 1, 4,>0, /hER (i= 1, 2, ..., n). Suppose that (N, q) 
is regular and that (C) holds. Then (Z, 1)) implies (N, q). 

Note that, by Lemma 3, sufficient conditions for (Z, r) to be perfect are that 

l r . ]<oo andthat r(z)#O for ]z[<=t. 
t l ~ 0  

THEOREM 4. Let s(z)=]~.{1--~.} ~ and t(z)=p(z)/s(z). Then PROOF OF 

k(z)s(z)t(z)=q(z). Define l(z)=k(z)s(z) so that l(z)t(z)=q(z). By Lemmas 1, 
2 and 4, (Z, t) is perfect and 

v=0  v=0  #=0  /~=0 v~/ t  

by (C). Thus, by Theorem 3, (Z, t) implies (N, q). Similarly, using the corollary to 
Theorem 2 in place of Theorem 3, we get that (Z, s) implies (N, q). Since p(z)= 
=s(z)t(z), by Corollary 3 of [7], we see that w,~0 (Z,p) if and only if w.=a,+b, 
where a .~0  (Z, s) and b ,~0  (Z, t). Hence, by the above, it is easy to see that 
(Z, p) implies (N, q). 
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5. The case (N, q) = (C, a) 

Although we cannot settle the general case with an arbitrary regular (N, q) 
method, consideration of the special case when (N, q) is the Ces~tro method (C, ~) 

leads to some interesting questions on the summability of the power series ~ e. z" 
n = 0  

on its circle of convergence. The Ces&ro method (C, ~) for ~ > -  1 is the Nbrlund 
method (N, q) with - "-~ q . - A .  where this is defined by (2). For (N, q) to be regular 
and Q , ~  we haveto consider a>0.  In this case k(z)=(1-z) - ' /p (z)=(1- -z) - ' c (z)  
so that k, = CZ -1 where we use the notation for Ceshro sums (see for example, page 
96 of [2] with e, replacing a,). For the question under consideration, Hardy's Theo- 
rem 19 becomes: if (N,p) is regular, P ,=O(1)  and a>0,  then the conditions 

(3) [c -lj = 
V=0 

(4) c -1 = o 

are necessary and sufficient for (N, p) to imply (C, a) (where p (z)c (z)= 1). The probl- 
em is to show that (4) follows from (3) and the other hypotheses. 

THEOREM 5. If(N, p) is regular, Pn = O (1), a >0, then (3) is sufficient for (N, p) to 
imply (C, ~+~) for every 6>0. 

q: - I r PROOF. By the corollary to Theorem 1, C,~ /A,--~O (C, 6), i.e., c,-~0 (C, 6)X 
X(C, u), the iterated Cesfiro method, and by page 23 of [5] or Ch. 11 of [2] this is 
equivalent to C,-~0 (C, a+6),  i.e., (4) with ~ replaced by (a+6). Also, (3) implies 
that (3) holds with a replaced by (~+5), since (3) is exactly the condition for the 

series ~ e, to be strongly bounded [C, ~]1 (see page 488 of [11]). Hence, by Hardy's 

result, (N, p) implies (C, c~ + ~). 
We are unable to decide whether we can take 3=0  in Theorem 5. It is clear 

that (3) alone does not imply (4) (consider C~-l=n" if n = 2  s (s=0,  1, ...) and 
0 otherwise) but we have been unable to construct an example with the e,'s satisfying 
the further hypotheses that e(z)p(z)=l, (N,p) regular and P,,=O(1). We can, 
however, make the following simplification. 

TrmOREM 6. If(N,p) is regular, P,=O(1), a>0,  then (3) and 

(5) c,, = o ( n 0  

are necessary and sufficient for (N, p) to imply (C, a). 

PROOF. By the remarks before Theorem 5 it is enough to show that, under the 
other hypotheses of the theorem, (4) is equivalent so (5). Now (4) says that e. 4 0  
(C, c0, and so by the limitation theorem for (C, a) (Theorem 46 of [2]) (5) must hold. 

Conversely, by the convergence of ~ [P,I and the regularity of (N,p), we see that 

p(z) is continuous at z = l  and p(z)~p(l)#O as z ~ l  in any manner from within 
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the unit circle. Also, (3) implies that ~ e,z" is convergent for Iz[<t and, by the 
t l ~0  

continuity of  ~ c.z'--I/p(z) at z - l ,  we have that ~ c.z"~l /p( i):as  z-~l in 
n ~ 0  r4~0 

any manner from within the unit circle. Hence, by a result of  Dienes (of. Th6or~me 
00 

XXVI of [5] or Theorem 9.23 of [12]), (5) implies that Z c, is summable (C, ~). By 
n = 0  

the remarks at the bottom of  page 102 of [2], c~-~0 (C, ~), i.e., (4) holds, and this 
proves the result. 

I f  we only require an implication from (N,p) to Ces~ro summability of some 
positive order then we have a more complete result, of. [3]. 

THEOREM 7. Suppose that (N,p) is regular and P,=O(1). In order that (N,p) 
should imply Cesfiro summability o f  some positive order it is necessary and sufficient 
that c , :O(nO for some ~>0. 

PROOF. To show that the condition is necessary, suppose (N, p) implies (C, ~) 

for ~>0.  Then ~ e , = l / p ( 1 )  (N,p) and so .~e ,=l /p(1)  (C,~). Hence, by the 
n=O n=O 

limitation theorem for (C, ~), c,-=o(n ~) and so the condition holds. 

For the sufficiency part, c,,=O(nO implies that ~ c,z" is convergent for 
�9 n = 0  

]z]<l and that c,=o(n ~) for 6>% Hence, by Dienes' theorem, as in the proof of  

Theorem 6, ~c, ,=l /p(1)  (C, 6). Thus, e,=o(n ~) and, by II of [11], ~ c , - -  
n~O n~O 

=Up( l )  [C, 6+111, and so (3) and (5) hold with ~ replaced by ~+1.  Therefore, 
by Theorem 6, (N,p) implies (C, 6+  1). 
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