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Norlund matrices as bounded operators on /,

By

DaviD BORWEIN and F. PETER Cass *)

Introduction. Given a sequence a = {a,}, the Norlund matrix N, = {a,,} is defined by
a, JA, for 0Zkzn
a =
"0 for k> n,

where A, = 3 a,. The N,-transform y = {y,} of the sequence x = {x,} is given by

k=0

Vn —Zan X for n=0,1,2....
A, =0

Norlund matrices have been extensively studied in summability theory. It is familiar
that N, is regular, and hence may be regarded as a bounded operator on ¢ the space of

convergent sequences, if and only if Z la,| = 0(A4,)) and a,/A, — 0. Thus, if N, is
regular, elther

(1) Z lay] <o,
k=0

or

2 |4,] — 0.

For 1 < p <o, every bounded operator on [, has a matrix representation. There is,
however, a paucity of information about whether specific matrices are bounded operators
on [, when 1 < p < co. This paper addresses the question for Nérlund matrices.

If (1) is satisfied, nothing essential is altered by taking the N,-transform y = {y,} of the
sequence x = {x,} to be defined by

(3) Vn = 2 A, Xy fOrn=0, 1,2,...;
k=0

N, is then the matrix of the analytic Toeplitz operator T, with ¢ (z) = ¥ a,7", acting
k=0

on the Hardy space H?. See for example [7, p. 135ff]. It is shown below that when (1)
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holds, N,, as defined by (3), is a bounded operator on [, for 1 < p <oo; the spectra of N,
are determined and estimates of the operator norms are obtained.

When (2) is satisfied, the only results of a general nature concerning Norlund matrices
as bounded operators on [, involve the Cesaro matrix C,. It follows from an inequality
of Hardy’s (in a paper about Hausdorff matrices) that, for p > 1 and ¢ >0, C, is a
bounded operator on [, with norm I'(1 + &) I'(1 — 1/p)/I" (1 + o — 1/p). See [8] and [9,
p. 273 ff]]. Cesaro matrices are the only ones that are both Hausdorff and Norlund [1]. The
results obtained in this paper concerning N, as a bounded operator on [, when (2) holds,
are detailed in Theorem 2 below; some discussion about the scope of the theorem is also
given in the commentary following the statement of Theorem 3.

Borwein and Jakimovski have established results about generalized Hausdorff ma-
trices as bounded operators [,. See [2] and [3]. Other results about special matrices as
bounded operators on I, appear in [4], [5] and [10].

Results. For | < p < oo let B(l,) denote the Banach algebra of bounded linear opera-
tors on [,. For ¢(z) = Z a,z let ||, = sup l@(2)]. Let D ={zeC:|z] = 1}. The
z|=
spectrum of N, in B(l, ) is denoted by a,(N,), and | N, Il , is the norm of N, in B(l,).

Theorem 1. Let1<p <o and |la; = Z |a] <co. Then N, € B(L,), 7, (N;) = ¢ (D)
and ol , S INJ, £ Mal,.

Theorem 2. Let 1 <p<o, a;>0 and a,=0 for n=1, 2,.... Suppose that
(n+ 1)a, < HA,, where H is a positive number. Then N, € B(l) and

[N, £2YP(gH + 1) £ 2V*(qH + 1)
where 1/p + 1/q = 1.

Theorem 3. Let 1 < p <0, 0 <a <1 and a, = e*. Then N, ¢ B(l,).

Concerning the estimates of the norms of N, in Theorem 1, it is known [7, Problem 196,
Corollary 1] that | N, |, = |l¢ || ., and, by standard results in summability theory, that
INJ =N =1lally. Mfag20fork=0,12,..., then |[N,|[, = llall, = || for
1 £ p £ 0. The Riesz convexity theorem [6, p. 525] implies that | N, | ,,, as a function of
t, is convex and hence continuous on the interval [0, 1]. Consequently, |[N, |, is non-
increasing for 1 £ p < 2 and non-decreasing for 2 < p £ oo. That it is possible to have
loll, < (@], is shown by the example ¢ (z) = z2 — z — 1, for which [[¢| , = \/5 and
lall, =3

The conditions of Theorem 2 are satisfied by the Cesaro matrices C, for & > 0. Since
Cyll, = g, the norm estimate is not sharp. The conditions of Theorem 2 are also
satisfied, with H =1, if g, =2 a,,, for n =0, 1,2,..., so the Norlund matrix N, with
a, = 1/(n + 1) belongs to B(l,) for p > 1. Since for a matrix {a,,} to belong to B(l,) it is

o0
necessary that 3 |a,,|? < 0, the weighted mean matrix M, with a, = 1/(n + 1) does not
n=0
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belong to B(l,) for p > 1. (M, = {a,,} where a, = a,/4,for 0 <k <nanda,, =0 for
k > n.) On the other hand, since M, € B(l,) for p > 1 whenever the sequence a is non-
decreasing (see [5] and [2]), Theorem 3 yields a case where N, ¢ B(l,) but M, € B(l,). It is
interesting to note for a, = 1/(n + 1) and b, = ¢ Vn_ that N, = C, = N, in the sense that
the C,-transform of a sequence converges whenever the N,-transform converges and the
N,-transform converges whenever the C,~transform does. See [9, p. 1091].

Since « 4, ~ n*~*e"™ when a, = ", Theorem 3 shows that the condition (n + 1)a,
< HA, in Theorem 2 cannot be replaced by the condition (n + 1)! "7a, < HA, for any
7€(0,1). Moreover, in order that N,eB(l,) for 1 <p <oco, it is necessary that
> la,/A,lF <oo; if in addition {|a,/4,]} is monotonic, this entails (n + 1)Pa, = o(4,).

n=0

Proofs of Theorems.

Proof of Theorem 1. For 1 £ p < oo, Hélder’s inequality yields

lyal” = { 2 |an—k”xk|}p S { )3 |an—k||xklp} lalf=".
k=0 k=0

Hence

w0 o] n ool

Tl lalt XX la,alixnd? = lallf X xl®

n=0 n=0k=0 k=0
When p = oo it is clear that

sup |y,| < llall, sup |x,]|.
nz0 nz0
Thus N, e B(l,) and {{N,[|, = [a]l, for 1 £ p 0.
Let S denote the matrix of the unilateral shift. So S = N, where 7 = {0, 1,0,0,...}. It
is standard that ¢,(S) = D. Let

o0
0, =0r)= 3% a7
k=0

Suppose now 0 < r < 1. Then ¢, is holomorphic in a neighbourhood of ¢,(S), so that,
by the spectral mapping theorem,

0,(¢,(5) = ¢,(D).
Moreover, if a,, = {a,r*}, then ¢,(S) = N,  and

(4) lagls z [@.S), Z sup {lA]: L€ ¢, (D)} = [l @]l »

Now

N, — e, I, <IN, - =N,

a—aglly

Nogy o = 1 Na—agy 1, = 1

=Y (1-|al—-0 as r-1"

k=0

by Abel’s theorem. Thus, letting r — 17 in (4), it follows that
lally 2 NN, 2 ol
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It remains to show that ¢,(N,) = ¢ (D). Let 0 ¢ ¢ (D). The Wiener-Levy theorem [11,
p. 401, Ex. 8] implies that N, is invertible, so 0¢a,(N,). Hence, if 14 (D), then
0¢0,(N,_,), so that 1 ¢ 0,(N,). Thus

) 0,(N) = ¢(D).
On the other hand, if ¢ 0,(N,), then N, — /4 is invertible in B(l,). Since the set of
invertible elements of any Banach algebra is open, N, A is invertible for » near 1.
Hence, for some 7, € (0, 1),

i¢g J o,N )= U 1 ¢.(D) = p(D°).

ro<r<l1 ro<r<

v

Thus o,(N,) 2 ¢(D°). Since ¢ (D) = ¢(D°) and o,(N,) is compact, the set inclusion
(6) 7,(N) = ¢(D)
holds. The desired conclusion follows from (5) and (6).

The proof of Theorem 2 is based on a result established in [3], which is a generalization
of the Schur test (see for example [7, p. 22]). This result is stated as Lemma 1.

Lemma 1. If A = {a,} is a matrix witha,, > 0for0 £ k < n,a, =0fork > n,ifb, >0
forn=0,1,2,...,

sup > a, (bk/bn)up =M, <x©

nz0 k=0

and -
sup Z Ay (bn/bk)llq = M2 <00,
k20 n=k

where 1/p + 1/q = 1, then Ae B(l,) and || A, £ M M}

Proof of Theorem 2 Leth,=1/(n + 1) and M, M, be as in Lemma 1. Then
with 6 = 1/p,

- (n + 1)6 " Ay
J _
kgo ank (bk/bn) - An kgo (k + 1)5 .

For some integer m, with n/2 <m, < n,
(n + 1)6 an—k < (n + 1)5 am,1 1
A, oskzp(k+ 1T A, osizma(k+ 1P
]
(n+2a,, < 2(m, + 1) a,, < 2°H

< < .
S (1—0) 2 %4, (1—0) 1-6
and
(n + 1)& an—k S (n + 1)6 26 S 25‘
A,  wr<esak + 1)6 T (n+ 2)6 -
Hence,

M, <2(H/(1—8) + 1) =2YP(qgH + 1).

30*
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Also

s S ®© a, (k+ 1\
PR (b bt = Y 2k
,Ek A, b/ ,Ek A, <n—|—1>

where u = 1/g. But,
© 0 a

an—k n
k+ 1F — < (k+ D _—
e+ 1) n=22k+1 A,(n+ 1) — ( ) n=%:+1 A,(n+ ¥

@ 1 © dx
<(k+1*H — < (k+1*H —_
s+ 1) n=§+1(n+1)"+1_( ) k£1x’“L1
=qH;

and
2k

(£
py ko
kD e iy =

Hence, M, < gH + 1. The conclusion now follows from Lemma 1 and the fact that
pqgz4
The proof of Theorem 3 uses the easily established fact that, for 0 <a < 1,

n
a Y e ~nl ™ The following lemma is also needed.
k=0

Lemma2 IfO<a<land 0Lt <n then(n -t —n* = —tn"" L.

Proof Let f(f)=(n—1)* —n*+tn*" ' Then f(0)=f(n) =0 and, for 0 <t <,
() = o — Dn—1)*~* <0, so that f(t) = 0.

Proof of Theorem 3. With g, =¢™, b, = 1/(n + 1) and = 1/p,

(m+ 1P e

I

(n + 1)6 e ot nil R A

3 albulb) =

16 n* )
2 O & h gy o
0

- A, k= A, k=1
n4 1)P°e™ _ nt2 ,
z( + ) ennz 1 j‘ efmac 1[75(11’
A, .
n+ 1 6en°‘ Y _ ~ B+ 2n% =1 -
— (__)-en 1 n(l d(l—-a) J‘ e uv—édv
A, o1

~an®T (1 — §)—o0.
Theorem 4 in [3] now shows that N ¢ B(l,) for 1 < p <co.
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