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N6r lund  matrices as bounded  operators on lp 

By 

DAVID BORWEIN and F. PETER CASS *) 

Introduction. Given a sequence a = {a.}, the N6rlund matrix N. = {a.k} is defined by 

{ ; ,_JA ,  for 0 - < k < n  

a"k= for k > n ,  

where A. = ~ ak. The N.-transform y = {y.} of the sequence x = {x.} is given by 
k = 0  

1 ~, 
Y" = ~ k=O an_kX k for n = 0 , 1 , 2  . . . . .  

N6rlund matrices have been extensively studied in summability theory. It is familiar 
that N~ is regular, and hence may be regarded as a bounded operator on c the space of 

convergent sequences, if and only if ~ lakl = 0(IZ.I)  and a./A,,--,O. Thus, if N. is 
regular, either k = o 

(1) ~ lak] < ~ ,  
k = 0  

o r  

(2) ]Z,I ~oo .  

For  1 _-< p < o% every bounded operator on Ip has a matrix representation. There is, 
however, a paucity of information about  whether specific matrices are bounded operators 
on lp when 1 < p < oo. This paper addresses the question for N6rlund matrices. 

If( l )  is satisfied, nothing essential is altered by taking the Na-transform y = {y,} of the 
sequence x = {x,} to be defined by 

(3) y . =  ~ an_kX k f o r n = 0 , 1 , 2  . . . .  ; 
k = 0  

Na is then the matrix of the analytic Toeplitz operator Te, with q~ (z) = ~ a k z k, acting 
k = 0  

on the Hardy space H 2. See for example [7, p. 135 ft.]. It is shown below that when (1) 

*) This research was partially supported by Grants A2983 and A4806 of the Natural Sciences and 
Engineering Research Council of Canada. 



Vol. 42, 1984 Nrrlund matrices on lp 465 

holds, N o, as defined by (3), is a bounded operator on lp for 1 < p < oo; the spectra of N, 
are determined and estimates of the operator norms are obtained. 

When (2) is satisfied, the only results of a general nature concerning Nrr lund  matrices 
as bounded operators on lp involve the Cesfiro matrix C~. It follows from an inequality 
of Hardy's  (in a paper about Hausdorff matrices) that, for p > 1 and e > 0, C~ is a 
bounded operator on Ip with norm F(1 + c0F(1 - l ip) /F(1 + ct - 1/1)). See [8] and [9, 
p. 273 If.]. Ces/tro matrices are the only ones that are both Hausdorffand Nrr lund  [1]. The 
results obtained in this paper concerning N o as a bounded operator on Ip when (2) holds, 
are detailed in Theorem 2 below; some discussion about  the scope of the theorem is also 
given in the commentary following the statement of Theorem 3. 

Borwein and Jakimovski have established results about generalized Hausdorff ma- 
trices as bounded operators lp. See [2] and [3]. Other results about  special matrices as 
bounded operators on Ip appear in [4], [5] and [10]. 

Results. For  1 < p < 0% let B (Ip) denote the Banach algebra of bounded linear opera- 

tors on lp. For  (p(z)= ~ ak zk, let [I~P [[~ = sup [~0(z)[. Let O = {z e C: ]z[ < 1}. The 
k=O N__<I 

spectrum of N~ in B (Iv) is denoted by av (N,), and I[ Na [[ p is the norm of N, in B (lp). 

Theorem 1. Let  1 < p <oo and [Jail1 = ~2 lak[ <oo.  Then Na e B(lp), crp(N~) = q)(D) 
and H~Pll ~ =< [IX~[[v < [Jail 1- k=O 

Theorem 2. Let  1 < p < o %  ao > O and a , >  O for  n = l ,  2 , . . . .  Suppose that 
(n + 1) a, < H A , ,  where H is a positive number. Then No ~ B (Ip) and 

][Uallp <= 21/Pq(qH + 1) < 21/4(qH + 1) 

where l ip  + 1/q = 1. 

Theorem 3. Let  1 < p < 0% 0 < ~ < 1 and a, = e "~. Then N a (s B (lp). 

Concerning the estimates of the norms of N, in Theorem 1, it is known [7, Problem 196, 
Corollary 1] that H Na II 2 = II q) II ~ ,  and, by standard results in summability theory, that 
PjNalrl= JrNo[[~= ]]a[]l. I f a  k > 0 f o r  k = 0 , 1 , 2  . . . .  , t h e n  I[N,[Jp= [[a[[1 = r[q~r[~ for 
1 __< p < ~ .  The Riesz convexity theorem [6, p. 525] implies that Jp N o [[ i/t, as a function of 
t, is convex and hence continuous on the interval [0, 1]. Consequently, [] N, [[ v is non- 
increasing for 1 < p < 2 and non-decreasing for 2 __< p =< ~ .  That it is possible to have 
[r (p ]l ~ < Ira I[ 1 is shown by the example ~0 (z) -- z 2 - z - 1, for which H ~o r[ ~o = x/-5 and 

Ilar[1 = 3. 
The conditions of Theorem 2 are satisfied by the Cesfiro matrices C~ for e > 0. Since 

II Ca II ~ = q, the norm estimate is not sharp. The conditions of Theorem 2 are also 
satisfied, with H = 1, if a, > a, + 1 for n = 0, 1, 2 . . . . .  so the N6rlund matrix N a with 
a, = 1/(n + 1) belongs to B(lp) f o r p  > 1. Since for a matrix {a,k } to belong to B(lv) it is 

necessary that ~ la,k[ p < 0% the weighted mean matrix M a with a, = 1/(n + 1) does not 
n = 0  
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belong to B(lp) f o r p  > 1. (M, = {Gg} where a.k = ak/A. for 0 _< k < n and a,, k = 0 for 
k > n.) O n  the other  hand,  since M, ~ B (Ip) for p > 1 whenever the sequence a is non-  
decreasing (see [5] and  [2]), Theorem 3 yields a case where N, r B (lp) but  M, ~ B (lv). I t  is 
interesting to note  for a .  = 1/(n + 1) and b, = e v~, that  N, c C, ~ N b in the sense that  
the C,- t ransform of a sequence converges whenever the N,- t ransform converges and  the 
Nb-transform converges whenever  the C,- t ransform does. See [9, p. 109f.]. 

Since c A ,  ~ n l - ~ e  "" when a,  = e "~, Theorem 3 shows that  the condi t ion (n + 1)a,  
<= HA, in Theorem 2 cannot  be replaced by the condi t ion  (n + 1) 1-~ a, < HA, for any 

e (0, 1). Moreover ,  in order  that  N, ~ B(lp) for 1 < p  <0 %  it is necessary that  

[a,/A,] v < oe; if in addi t ion {[a./A, l} is monotonic ,  this entails (n + 1) 1/p a ,  = o (A,). 
n = 0  

P r o o f s  o f  T h e o r e m s .  

P r o o f  o f  T h e o r e m  

Hence 

1. For  1 < p < oc, H61der's inequality yields 

[Y.['<= I[a[l~ -1 ~ ~ [a.-k]]Xk['= HaH~ ~ ]Xkl p. 
n : O  n=O k=O k = O  

W h e n  p = oo it is clear that  

sup ]Y,[ --< II a II~ sup [x.I. 
n > 0  n>=0 

Thus N, ~ B (Ip) and [I N, IIp < [I a L[ 1 for 1 < p < oe. 
Let S denote the matrix of the unilateral shift. So S = N. where z = {0, 1, 0, 0,. . .}. It 

is s tandard  that  crp (S) = D. Let 

%(z) = cp(rz)= ~ akr kz k. 
k = 0  

Suppose now 0 < r < 1. Then  % is ho lomorph ic  in a ne ighbourhood  of ap(S), so that, 
by the spectral mapp ing  theorem, 

a ,  (% (S)) = (p, (O). 

Moreover ,  if at, ) = {a k rk}, then % (S) = Na~) and  

][ %)II~ ->- I[ %(5)II p >-_ sup r ,~ e (pr (D)} = ]1 (Pr  ]1 ~o" (4) 

N o w  

Ill ga I[ p - II % ( 5 ) [ I  pl ~ II Na - g.<r, I[ p : [ Ig .  a,r, tl p ~ 1[ O - -  %> /[1 

= ~ (1 -- ?) lakl  ~ 0 as r ~ l -  
k = 0  

by Abel's theorem. Thus,  letting r ~ 1 -  in (4), it follows that  
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It remains to show that % (Na) = r (D). Let 0 ~ r (D). The Wiener-Levy theorem [11, 
p. 401, Ex. 8.] implies that N, is invertible, so 0r  Hence, if 2d~cp(D), then 
0 ~ o-p (N,_ ~), so that 2 r ap (N,). Thus 

(5) %(No) = ~o (O). 

On the other hand, if 2 r a; (N~), then N, - 2 is invertible in B (lp). Since the set of 
invertible elements of any Banach algebra is open, N,(,) - 2 is invertible for r near 1. 
Hence, for some r o ~ (0, 1), 

~ 5  U ffp(Na(o)'= U q~.(D) = q~ (D~ �9 
r o < r <  1 r o < r <  1 

Thus ap (Na) ~ q~ (O~ Since q~ (D) = ~p (D ~ and ap (Na) is compact, the set inclusion 

(6) ap (N,) = q~ (D) 

holds. The desired conclusion follows from (5) and (6). 

The proof of Theorem 2 is based on a result established in [3], which is a generalization 
of the Schur test (see for example [7, p. 22]). This result is stated as Lemma 1. 

Lemma 1. I f  A = (a.k} is a matrix with a.k > O for  0 < k < n, ank = O for  k > n, i fb .  > 0 
for  n = O ,  1,2 . . . . .  

sup ~ a.k(bk/b.) lip = Ma < oe 
n > O  k = O  

and 

sup ~ a,k(b./bk) 1/q = M2 < ~ ,  
k > O  n - k  

where 1/p + 1/q = 1, then A ~ B(Ip) and [I A [[ p < A/tl/q l l / f l / P  ~,1 1 ~r~ 2 " 

P r o o f  o f  T h e o r e m  2. L e t b , = l / ( n + l )  a n d M 1 ,  M 2 b e a s i n L e m m a l .  Then 
with 6 = i/p, 

(n + 1) ~ " a._ k 
/=oZ a.k (bk/b.) ~ - A .  k~=O (s T 1 )  o" 

For  some integer m. with n/2 < m. < n, 

an_ k (n + 1)a am. 1 (n + 1) ~ Z < 57 
A n O < = k < n / 2  (k + 1) ~ = A n O<_k<_./2 (k + 1) ~ 

< ( n + 2 ) a . , .  < 2 ( m . + l ) a m .  < 2~H 

= 21-~A.(1 -- 5) = 2a-OA,..(1 -- 5) = 1 -- 6 '  

and 

Hence, 

(n + 1) ~ a._ k (n + 1)a2 a 
57 - - <  < 2  ~. 

A.  . /2<k<- . (k+l )  ~ = ( n + 2 )  e 

M 1 =< 2a(H/(1 -- 5) + 1) = 21/p(qH + 1). 

30* 
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Also 

~nk(bn/bk) l/q:- ~ a ' - k (  k + l ~  u 

where  # = 1/q.  

(k 

< 

and  

But, 

a n 
a ._a  < (k + 1) u + 1) u 

- -  A . (n  + 1) u = . = k + ~  A . ( n  + 1) u n = 2 k + l  

(k + 1)UH < (k + 1)' H xU+l 
. = k + l ( n +  1) u+l  = k+l 

q H ;  

2k a n _  k 

(k + 1)".:kZ A . (n  + 1)" ~ 1. 

Hence,  M 2 < q H + 1. The  conclus ion  now follows f rom L e m m a  1 and  the fact tha t  
p q > = 4 .  

The p r o o f  of T h e o r e m  3 uses the easily es tabl i shed  fact that ,  for 0 < c~ < 1, 

c~ ~ e k~ ~ na-~e"L The fol lowing l e m m a  is also needed.  
k = O  

L e m m a  2. I f  0 < a < 1 a n d  0 <- t <_ n, t h e n  (n - t) ~ - n ~ >= - t n ~ -  1. 

P r o o f .  Let  f ( t )  = ( n -  t) ~ - n ~ + t n  ~ - 1 .  Then  f (0 )  = f ( n )  = 0 and,  for 0 _-_ t <_ n, 
f " ( t )  = a ( ~  - 1 ) ( n -  t) ~-2 =< 0, so t h a t f ( t )  >= 0. 

P r o o f  o f  T h e o r e m  3. W i t h  a ,  = e "~, b ,  = 1 / (n  + 1) and  6 = i / p ,  

a . k ( b k / b . ) O _  (n + 1)~ e . .  ~ e ("-k)" "~ 

(n + 1) ~ e "= " 
> Z e -k"~- l (k  + 1) -~ - 
- A,  k=O 

> (n + 1)~e "~ e .~_i"+2 
e ~'~ i t  ~dt  

- -  A n 1 

n~ -- 2 n ~  - 1 
_ (n + 1 )~e  "~ e . ~ _ l  n(1_~)(1  ~) 

An n~- 1 

c~n~aF(1 - 6)--*oo. 

(n + 1)Oe "~ . + l  
e . ' - 1  ~2 e - k " ~ - l k  -~ 

A,  k=a 

e v v - ~ d v  

T h e o r e m  4 in [3] now shows tha t  N a $ B (Ip) for 1 < p < oo. 
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