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1. Introduction

For p=1 let I# be the normed linear space of all complex sequences x={x,}
with norm

Il = (ni\x,,!f’)”” <co.

Let B(I?) be the normed linear space of all bounded linear operators on [F into
IP, so that a matrix 4=(a,,)eB(/) if and only if, for every xel?, y,=(4x),

=Y a,,%, is defined for n=0,1, ... and y={y,}€l’. The norm [4], of a ma-
k=0
trix AeB(lP) is given by
1All,= sup [Ax],.

“x”p§ 1
Weighted mean matrices. Let a={a,} be a sequence of positive numbers and let
A,= Y a,. The weighted mean matrix M,=(c,,) is defined by
k=0
an:% for 0k<n; ¢,=0 for k>n.

The following theorem is due to Cartlidge [3].
Theorem A. If p=1, p>c>0 and

A A
“rrlce4 T for n=s,5+1, ...,
an+ 1 an
then M eB(I") and, when s=0, ||Mallp§L.
p—c¢
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The primary object of this paper is to extend Theorem A to generalized
Hausdorff matrices.

Generalized Hausdorff Matrices. Suppose in all that follows that A={4,} is a
sequence of real numbers with 4,20, 4,>0 for n=1, and that « is a function
of bounded variation on [0,1]. For 0<k<n, let

1 t*dz
@)= =g oen 2

e <
i G h vy OSiEb
)“nk(o):/lnk(o_i_):

C being a positively sensed closed Jordan contour enclosing A, 4., 1, ..., 4,.
We observe the convention that products such as 4, , ;... 2,=1 when k=n. Let

1
A= A () dae(t)  for 0<k=<n, A,=0 for k>n, 2
0

and denote the triangular matrix (4,,) by H(4, o). This is called a generalized
Hausdorff matrix (see [2]). We shall prove the following theorem.
Theorem 1. If p=1, ¢>0 and

Ipe1Sc+A, for n=ss+1, .., (3)

1
and if {77 |da(t)] < oo, then
0

H(A, 0)eB(IFy and [H(A, oc)lipg/.tl/"} =P |da(1)]
0

where
1 when s=0

=1 max Apa oy when s> 1.
0<k=Zn<s (lk-f-C)..,(/ln_l'i‘C)

Hardy [4] established this theorem for ordinary Hausdorff matrices, ie., 4,
=n, and showed that in this case, if « is non-decreasing, then [H(/, )|,
1
= [t="7 du(t). Jakimovski, Rhoades and Tzimbalario [5] extended Hardy’s re-
o]
sults to the case 4,=n+a, a>0.
A “generalized weighted Hausdorff” matrix W=(w,,) is defined by

Woo=1o0>  Wu=Au(l/2)'?  for nz1;

and W is defined to be the matrix (|w,,|). Borwein and Jakimovski [2] proved
that if p=1,

8

0y <d <... <4, A,—©,

n

Lo
VS

n
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and if (2) holds with a normalized, ie., a(0)=0 and 2a(f)=a{t+)+a(t—) Jor
0<t<1, then W, WeB(®), |WI,<|Wi|, and

1 1
(f) |de(®)] =120 +)| S | W] = (J; |dor(t)

Let
Dy=(1+1)dy=1, Dn=(l+%> (1+%>=(1+i,,)dn for n=1. (4)
1 n
Then
}. n
DnzznﬂdwlzﬁjL Y d, for n=0. (5)
It is known (see [2]) that
04, (S Y St for 0<t<1, 0<j<n, (6)
k=0
; d
jznk(t)dt=1-)£ for 0<k<n. (7
4] n

When aft)=t and 1,=0, H(4, «) reduces to the weighted mean matrix M, with
d={d,} given by (4). Conversely if d={d,} is a sequence of positive numbers
with d,=1, then (4) yields a sequence A={4,} such that H(4, «) becomes M,
when a(t)=t. These observations together with (7) show that Theorem A is a
special case of Theorem 1.

2. Preliminary Results
Lemma 1. Let 2%, =Aoo, A=Ay A/A, for n2 1. Then, for m=n=0,

Z ’lmk 2 l (8)

k=n

Proof. 1t follows easily from (1) and (2) that, for m=k=0,

/'{‘m—k l,k—}'mkz(/lm-f— 1,k’1k _ﬂ‘m-k 1L,k+1 /lk+ 1)//1m+ 1

We proceed by induction on m. Clearly (8) holds for m=n. Assume (8) holds
for some m=n. Then

m+1 m+1

_ . L S
Zlm-&-l,k ZA Z m+ 1,k j'mk)—*_)tm‘il—i,m—‘k1 )'mﬁ-l,n
k=n =n
1 m
— %
) Z (j'm-#l k’l ’1m+1 k+1)“k+1)+ﬂ'm+1,m+1 )'m+1,n
‘m+1 k=n
*
m+1n n//lm-f—l m+1 m+1+/1m+1 m+1 im-kl,n
=0.

Thus (8) holds with m+1 in place of m. This completes the proof.
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Lemma 2. Let A},()=21,,(0), 25 ()=4,, () A,/A, for n=1. Then

o0

YOSl for 0561, n20.

k=n

Proof. By Lemma 1 and (6), we have that, for m=zn=0, 0=<¢<1,

Z)“n Zj’mk(t é
k=n k=n

The desired result follows.

3. Proof of Theorem 1
Let 0<t<1, and let

w,=w, ()= Z Y GER 9

where x={x, }€l’. Then, by Holder’s inequality and (6),

n n p—1 n
W MCIE P C) B PWWMCIEN,

and so
Z 1wnlp§ Z kalp Z }'nk(l)‘ (10)
n="0 k=0 n=k
t 7, =4,+c¢ and define 2.8 by (1) with {1} in place of {4 }. Since
/lk+1 v g Ay oer Ay for 0Lk <n by (3), it follows from (1) that

A t=pl (L)%, for n=k.

Hence, by Lemma 2,

Z j'nk(t) tc§uv
n=k
and so, by (10),
Y w Pty Ix (11)
n=10 k=0
Now let
= Z Ankxk'
k=0

Then, by (2) and (9), .
Vo= [ wa(®) d(2). (12)
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It follows from (11) and (12), by a form of Minkowski’s inequality, that

[eo)

(Eoiynl">w§i (% |w,,|l’)1/p|da(t)|

n=10
1 0 1/p
<" [ = |dor(s) ( y |xk|1') ,
0 k=0
1
i 31, S el [ da),

This completes the proof of Theorem 1.

4. A Subsidiary Theorem
1

Theorem 2. If p>1,d,, =d, for n=s, and [t~"?|do(t)| < 0o, then H(A, a)eB(I?).
0

Proof. By (4) and (5), we have that, for n=s,

D,., D (1 1
el L5 Wit J 5
A NG

‘n+1 Y] d

n+1 n n+1 n

The desired result is now an immediate consequence of Theorem 1. Cartlidge
[3] proved the special case a(t)=t (ie., H(4, ®)=M,) of Theorem 2.
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