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GENERALIZATION OF THE HAUSDORFF
MOMENT PROBLEM

DAVID BORWEIN AND AMNON JAKIMOVSK]

1. Introduction. Suppose throughout that {,} is a sequence of
positive integers, that

1

Oélo<l1<l2<.-.<lmlu—>cﬂ,zlk;n=00
n=1 ¥y,

that kg = 1 if I, = 1, and that {u,"} r=0,1,...,k,—1, n=0,
1,...) is a sequence of real numbers. We shall be concerned with the

problem of establishing necessary and sufficient conditions for there to
be a function & satisfying

1
1) (=1)%," = f ™ log’t de(t)
0

forr=0,1,...,k -1, n=0,1...
and certain additional conditions. The case lh=0, k =1 for n =0,
I,... of the problem is the version of the classical moment problem
considered originally by Hausdorff [5], [6], [7]; the above formulation
will emerge as a natural generalization thereof. An alternative formula-
tion of the problem is to express it as the “infinite Hermite interpolation

problem”’ of establishing necessary and sufficient conditions for a function
F to be a Laplace transform of the form

F(z) = fﬂm e “dy (u)
and to satisfy
FO@) = (=) u®forr =0,1,...,kh—1,n=0,1,....
Considerable simplification is obtained by adoption of the following

notation. Construct a monotonic sequence {As} from {L,} by repeating
each I, k, times. Then

0=XsN

lIA

s

h?é---éhmxl >01 A*ra'_>a:)l = 00,

1
lhn

I

n
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For each s there is an integer n(s) such that X\, = l,y. Let m, = Eats)
and construct a sequence {u,/ "} (r=20,1,.. X m, — 1, 5 = 9, 1,%.)\.)
from {u,("} by setting u,(” = #4,(»". Then m; is the mL(l})tnphU(Ej;( oh .
i.e., it is the number of indices j for which ?%j = As an'd pitD = " when-
ever \; = \,. Formula (1) can be written in the equivalent form

@ (0w = [ P logida®

forr=0,1,...,m,—1 s=01,....

For 0 <k < s <, let m,(k,n) be the multiplicity of )\s. among

My Nl R ?\_n By a standard result on Hermite interpolation (see
i prs g

(3, p. 29]) there is a unique polynomial 7,(z) of degree at most # such

that

3) P02 = (=1)'p" forr=0,1,...,m0,n) —1,
=il e B

It is known (see [11, p. 45]) that

Po@) =2 ul oo Ml — 2) oo (e — 2)
=0
where the divided difference #[X, . . ., A,] is given by
1 f P,(2)dz

WMl = =52 L BT e —2)
C, being a positively sensed Jordan contour enclosing Mg, MNet1s « - - 5 Aae
For0=k=n0<tsl,let

)\nk = 7\?4:+1 X hnu[}\kv ek ?\H]l

1 t*dz
@) M) = =M1 Mg fc,,ﬂ =2 ... \W—2)"
P\Rk({)) == Ank(0+):

with the convention that products such as Agy1. ..\, = 1 when & ——(—1 n.
If f(z) is analytic inside and on Ci, then, by the theory of residues,

f f(z)dz
o M —2) ... (M — 3)

is a linear combination, with coefficients depending only on X,

Met1r - - - 5 Ay, Of the values f(\,), r =0, %, N ms(k', n).— 1, s =
EE+1,...,n It follows that \.(f) is a linear combination of the
functions felog™t, r =0,1,...,mk,n) — 1, s=kk+1...,n

and that A\, is the same linear combination with (—1)7u,"” substituted
for £+ log” t. Consequently, if « € BV, where BV is the space of norma-
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lized functions of bounded variation on [0, 1}, i.e.,, a(0) = 0, 2a(t)
a(t+) + a(t—) for 0 <t < 1, and if

1
(=¥, 2 =f £ log’tda(t) for0 =r <myk,n), kSs=n
0
then
1
Ank =f A1&:?5(15)03050)'
Q

An explicit formula for u[A, . . ., \,] can be obtained by evaluating

ey f tdz
2t J ey, e — 2) ... (\a— 2)

and substituting (—1)7u,( for £« log in the result.
Let

Dy= (14 N)de= 1D, = (1+%)(1+3\1_)
1 7

= (1 + A)dn forn = 1.

Then, for n = 0,

Dn = A11,-1—1"1-:';14‘1 = T + Z dky

and, forn > k = 0,

N | . d . f”" dx D,
e B o o e = e =R
() E“H-xj EEMD;.;-Z %8 D,

P

Further, it is known that if all the \,’s are different, then

6) 0= X)) EX M) =1 for0=t=1 0=s=mn,
k=0

by [10, Lemma 1] and

1
D) f A (t)dt = % for0<k=n
0

by [6, p. 294]. A simple continuity argument applied to (4) shows that
(6) and (7) remain valid when different \,’s are allowed to coalesce.
Let 6 be an even continuous convex function such that 8(x)/u — 0 as
#— 0 and 8(u)/u — 0 as u — 0. Associated with this function is the
Orlicz class Lo of all functions x Lebesgue integrable over [0, 1] for which

f:e(x(t))dt < .
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Let L. be the space of measurable functions x on [0, 1] with finite
norm

%]l = ess. supocica [2(2)].

Let
= d D
M = =k (_n )
o) = 2 1 0\ Me)
Myi(n) = [ Al

k=0

Mm(n) = Maxogg<n |Anki ‘%‘E \
k
and let

My = sup,zo Mo(n), My = sup,zo M1(n), M, = supmzo M (n).

The following two theorems are the main results established in the
present paper.

THEOREM 1. A necessary and sufficient condition for there to be a func-
tion
(i) @ € BV satisfying (1) is that M, < o0 ;
(ii) B € L, satisfying

®) (=1)u," =f0 t™ log’t B(t)d¢

forr=0,1,...,k,—1,n=01,...

s that M, < o0 ;

(iii) B8 € Lg satisfying (8) 1s that My < 0.
Furthermore

(iv) if (1) 45 satisfied by a function a € BV, then
My = [}|da(t)|—8|a(0+)| where 5 = O when Iy = 0,8 = 1 when Iy > 0;
moreover o is unique when ly = 0, and when ly > 01t differs by a constant,
over the interval 0 < t < 1, from any other function in BV satisfying (1);

(v) if (8) is satisfied by a function B € L, then B is essentially unique
and My, = 8]l

(vi) if (8) s satisfied by a function 8 € Ly, then B is essentially unique
and

1
M, =f 6(B(t))dt.
0
THEOREM 2. Forn = 0,1, ...,

Mi(n) £ Mi(n+ 1), M (n) £ M, (n + 1), Me(n) < Ms(n + 1);
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and
lim, ., Mi(n) = My, lim, ., M(n) = M, lim, My(n) = M.

The case lp = 0, k, = 1 for » = 0,1, ... of Theorem 1(i) was estab-
lished by Hausdorff [5], [6] and Schoenberg [13] subsequently gave a
different proof; the case Iy > 0, k, = 1 for n = 0,1, ... was proved by
Leviatan [9]. (See also [4].)

The case I, = n, k, = 1 for n = 0,1, ... of Theorem 1(ii) is due to
Hausdorff [7].

Thecasel, = n, k, = 1forn =0,1,...,0(u) = [uf?,1 <p < o0, of
Theorem 1(iii) is due to Hausdorff [7] and the case k, = 1 for n =
0,1,...to Leviatan [9], [10]. (See also [1] and [2].)

See [2] and the references there given for known special cases of
Theorem 2.

2. Preliminary results.

LuMMA 1. Let 7, a be non-negative integers, let 0 < N < Agy1, and let

A A - 1 ’
w=(1-2) o (1-2)( 5 +2)°
* Ak+1 ?\n 3‘;1 )\j - ?\
Then (i) 8,y 15 uniformly bounded for n > k Z a,

(i1) lim, o 8 = 0 for B = a,

sss Dk A Dn .
(iii) 8. — D log’ D 0 uniformly when n > k — 0.
n k

Proof. Let0 < e < ha=A—¢B= A+ g let
_ s 1
g Ynk j=k+1)\j!

and, for n > a, let

}\ —0n fAn 1 = —Bn fAn
un=1—)\—n:e M Gy = (1+i;) L
Then a, — \, 8, — A and so we can choose a positive integer N = aso
large that

lon, — N < & |8 — M < e forn>N.
First, for # > k = N, we have that

. 1 ) _ ( Nein N
0 <y =1u u( < gy | ) .
¥ s . 1;4 A, — AT L M1 — A

Since v, — o as n — o, it follows that (i) and (ii) hold for & = N. The
extension of these conclusions to the range N > k = a is simple.
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Next, let

n 1 r
ank=|uk+1...un—‘ﬂk+1---vn|(Z )’

F=k+1 ?\j — A

n 1 T .D
by = 0 n{( )* ’—”}

Then, for > k = N, we have that

(9) 0 = Ank é (e_"“? —_ G_BT)YT(__B\_:’Ei'_I_) 4
A1 — A

_ X ?
A
8 — a)e ™y ot —
< v (r _Ll)! ( N ) _ 2(r+1)! ( M ) ,
- (a’Y)T AIc-}-l - A ()\ - E)r+1 )\k+1 — A s

and, by (5), that

10) 0<b S R Ry (O D
S by = Vg1 .- wﬂr( ) ( - __ﬂ)
b S Urtl j§1 S = B j;k;H o K log D,
n n
2

M=

é Vg1 o« .‘Unf’(

)fx+1

LAy — N M

ée_w?"yr(k M1 )77\+1§ rr! T( At 1 )T)\‘i‘l
1 — A A N —€)" \Ngg1 — A

It follows from (9) that a,; — 0 uniformly when # > k — oo, and from
(10) that b, — 0 uniformly when # > k — c0. Since

Bur — (&)Alo r £
"~ \n) % D,
conclusion (iii) follows.

LEMMA 2. Let ¢(t) = g — 8) ... (\y — t) where 0 S bk < n and
0 <t < Neyu, and let v be a positive integer. Then
o0 - v 3 )| s 20 (5 L)
j=ZH1)\j—t T Aksr — j;,ﬁ_l)\j—t
Proof. The result is evidently true with M = 0 when » = 1. Suppose
therefore that » = 2 and let

Netr

S e + b forn >k = N,

El

where M is a number independent of t, k and n.




952 D. BORWEIN AND A. JAKIMOVSKI

As easy inductive argument shows that
!P(r) (t) r( n ) T
YN ey ;

oy O g,

is equal to a linear combination with constant coefficients of terms of
the form

n bl n b, n bm

@ a m

PIRETE PR 7] B Evf)

=Tl F=k+1 J=Ft1

where the a,'s and b,'s are positive integers, ¢; > 1 and
albl + asz + o X + ﬂmbm = 7.

Each of the terms is no greater than

n . 7 b1 n by e bm
@y~ a a a
Yirr| 2 v 2 M b i
J=k+1 j=k+1 J=k+1 j=k+1
n a171+a1(bl—1)+a2b2+..‘+ambm n r—1
= Y1 Z Yi = Yg41 Z :

j=Ft1 F=kt
The desired conclusion follows.
LEMMa 3. Let ¢(t) = Agp1 — £) ... (\y — £), ®() = (A — %)

where a 15 a positive integer, 0 £ s < nand Ay < Mgy1. Then ®O(N\) =0
when 0 < v < a, and when r = a,

n l T—a
7\ =M )\s( —)
|2 (A)| = My(A,) P vy

where M 1s a number independent of s and n.

Proof. The first part is evident. For the second part we observe that,
when r = a,

[ @O =7r(r — 1) ... (r —a+ 1YU—2(),),

and, as in the proof of Lemma 2, that ¢~ (\;)/¥()\;) can be expressed
as a linear combination with constant coefficients of terms each with
absolute value no greater than

n 1 )rﬂz
( Jzzs’-:i-l -AJ' - >\s '

The desired conclusion follows.

LEvma 4. If My < 0, A, < Apandr =0,1,...,m, — 1, then

Ag A, = 1 ’
nliro]u k;s * 7\k+1 }\n j=;+1 Aj - )\3

Proof. For » = 0 the above sum is equal to u, for every n = s by
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(3). Suppose therefore that 1 < » < m, — 1. Then, by Lemmas 2 and 3
we have, for n = s, that

a1 |[(=1)'P, "’(M—Z Rnk( 2 ) e (1 _%\;)

=k} ;\)
X(jklhg 8

-1

7
é MZ p‘nk‘?ﬂllyn—_kfi + M'wns Z |)\nkl
k=s k+1 s

k=s—ms+1

where M is a positive number independent of s and #, and

) -2 )”
e = |1 — == 1—= .
Wt ( ?\k+1 7\ j—Xk;{rl)\ )\s

Since 2 o || £ M, for n = 0, and, by Lemma 1(i) and (ii), wu is
uniformly bounded and lim,_,, w,; = 0 for & = s, the right-hand side of
(11) tends to 0 as # — 0. In view of (3), this establishes the desired
conclusion.

LemMMmA 5. If My < w0 andr =0,1,...,m, — 1, then
- Dk) . Dy
( 1) Jus - }1.1—{2]:2: ?\ﬂk(D IOg Dﬂ d

Proof. Suppose, without loss in generality, that A\; < A4, and let

A mh_( S )
“"_(1 Aw) (1 )\) S N — A,

Then, by Lemma 1(ii) and (iii),

&) fa r_D_n} _

i 3 hadin = (3) 108 B2 - 0

since Zk=0 [Max| = M, for n = 0 and D, — o0; and, by Lemma 1(ii) and
Lemma 4,

n
hmz Anibnz = ﬂs(r)

e k=0

The desired conclusion follows.

LeMMA 6. If a function x € BV 1s such that

1
f M logtdc(t) =0 forr=0,1,...,my—1, s=0,1,...,
0

then x(t) = x(04) for 0 < ¢t = 1. If, in addition, Ay = 0, then x(0+) = 0.
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Proof. When X\ = 0 it follows from a known result (see [11, Theorem
8.2]) that

1
f f'dx(t) =0 forn=0,1,....
0

The proof can now be completed in the same way as in the proof of
Lemma 3 in [2].

3. Proofs of the main results.

Proofs of the necessity parts of Theorem 1(i), (ii) and (iii).
Part (i). Suppose the function a € BV satisfies (1). For0 £ k& £ 7, we
have that

Aok = fol A (£)dex(t),
and thus, by (6),

éﬂ [ M| éfﬂ |dee(t)| gﬂ Az (2) gfo |dee(2)].
Hence

(12) M, gfﬂ |dee(t)].

Part (ii). Suppose the function g8 € L satisfies (8). For 0 = & = 5,
we have that

(13) Mg = fo )\nk(t)ﬂ(t)di
and thus, by (6) and (7),

d
e = 11811 3
Hence

(14) M, = |8l

Part (iii). Suppose the function 8 € L, satisfies (8). It follows from
(13) and (7), by Jensen’s inequality (see [15, pp. 23-24]) that

1
(D” hnk) = Qf A ()O(B())dt for0 = k = n.
dy d;

Hence, by (6),

Z%ﬁe(g— Ank) éfule(ﬁ(t))dt

k=0
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and so

1
(15) Mo éf 0(8())dt.
0
Proofs of the sufficiency parts of Theorem 1(i), (ii) and (ii1).
We first observe that

kz=0 I}\nk‘ = ooZ 5 < Moc!

and, by Young's mequahty (see (8, p. 12]), that

D _‘QE
"(E; |7\n7c| = N(l) + e(dk Rnk)

where N is the convex function complementary to 0 (see [8, p. 11]).
Hence

Z} [Ae] = N(l)E -+ Z —e(; Ank) < N(1) + Mo.

It follows that M; < Mm, M, < N(1) + M, and so M, < co under
each of the three hypotheses of the sufficiency parts of Theorem 1(i),
(ii) and (iii). Suppose therefore that M; < co.

Forn = 0,1, ..., define the function «, on [0, 1] by setting

) = ‘ for0 = ¢ < 1/D,,
o ] ; A forl/D, <t =1,

so that

1 L3
fu [den(®] = 22 M| = M.

Consequently, by Helly’s theorem (see [14, p. 29]), there is an increasing
sequence of positive integers {#;} and a function a of bounded variation
on [0, 1] such that

(16) lim, 0, () =a(t) for0=t=1

and

(17) f  lda()] = M5,

Part (i). By Lemma 5, we have that

llmf £ log™t da (2)

00

(_l)rﬂs = hmz )\’n‘l_k( k) lo og ID)

Nco k=0

forr =0,1,...,m¢— 1, s =0,1,.... It follows, by the Helly-Bray
theorem, (see [14, p. 31]) that « satisfies (2) and hence (1).
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Part (ii). Suppose M, < ®. Let 0 £ x <y = 1. Then for # suffi.
ciently large there are integers a, b (depending on ») such that —1 <
a <b=mnand

D D, D D
pSx< D: gﬁg;\m@?:—‘ (D_, = 0),
since
dx D, 1
max — = max 7—————0 asn-— o0
0=k=n L0 0 Zxsn n 1 + k
Now
b
An
'Cln(j’) = an(x)l _ k;—l g < Hf
b ﬂ_ S b d_k = oo
k=a+1 Dn k=a+1 Dn
and

b
lim Y ﬂ=y——x.

oo k=a+l Ly
In view of (16), it follows that
20) ~al@)] _
y—x
Hence

i
alt) = c—l—fﬂ Bu)du for0 £t =<1

where 8 € L, and 8|, < M,,. Further, 8 satisfies (8) since « satisfies
(1).
Part (iii). Suppose My < 0. Let 0 = xp < %, < ... < x,, = 1. Then,

for » sufficiently large, there exist integers ag, a1, . . . , @, (depending on
n)such that -1 =ay < a; < ... < a, = nand
D.. Do A
ﬁ:ng<%:“l forj=1,2,...,m—1,
so that
aj+1
on(X341) —aa(®;) = D A forj=0,1,... ,m — 1.
k=1+a;
Let

aj+l
Ojn = ( Z %) H(O‘ﬂ(xjt:?u_daﬁ(x'f)).
k=1+aj Lpn E Gy

k=14aq Dn
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Then, by Jensen's inequality (see [15, pp. 23-24]),

aj+1
T = Zg_"e(&xm) fory=0,1,...,m — 1,

k=l+4aj dk

and so

m—1

E o','n = Mﬂ

=0
Also

aj+1 d
lim ), X =x4,—x, forj=0,1,...,m — 1.

fioc k=1+a;j D,

In view of (16), it follows that

= = a(r1) — alx,)
lim 2 o0 = ; (X1 — %,)0 =< M,

Nyoo j=0 xj+]_ s :\’,’_4
and, by a theorem of Medvedev [12], this implies that

a(t) :c-{-fo Blu)du for0 =t =1

where 8 € Ly and [56(8(t))dt < M,. Further, 8 satisfies (8) since «
satisfies (1).

Proofs of Theorem 1(iv), (v) and (vi).

Part (iv). Suppose that /, = 0. By Lemma 6 the function « € BV
satisfying (1) is unique. By (12), (17) and the proof of the sufficiency
part of Theorem 1(i), we have that

1
M gfo lda(t)| < M.

Suppose that [, > 0, and let v(0) = 0, v{!) = «(f) — «(0+) for
0 <t =1 Then v £ BV and satisfies (1). Hence, by (12),

s [

Further, by (17) and the proof of the sufficiency part of Theorem 1(i),
there is a function & € BV satisfying (1) and

fﬂl |da(t)| = M.

By Lemma 6, v(t) = a(t) — a(0+) for 0 <t = 1. Since y(0+4) =
¥(0), we have that

My §fo 2101 éfo |da(t)| = M.
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Hence

1= [ e — a0 41

Part (v). By Lemma 6, the function 8 € L, satisfying (8) is essentially
unique. By (14) and the proof of the sufficiency part of Theorem 1(ii),
we have that M, = [|8]. = M..

Part (vi). This part can be established by the proof of Part (v) with
certain obvious modifications.

Proof of Theorem 2. Let 0 < k = n. Then

A A
(1 - 'A_k_) Aorne + 22 Mpraan
n+1

)\n+1
A 1 Pry1(z)dz
AR T
e PN i/ 27 oy e — 2) o (e — 2)
)\k+1 1 P, 1(z)dz
=AMtz oo Mgy T = ek
o i Mt12mid oy e — 2) .0 (M — 3)
1 Poi1(2)dz
= —Ms1. . M S = Ak,
i 2rid oy e —2) . .. (M — 2) Mo
and hence
n A D,
(18) A, ~=(1——’°)>\,,, 142 ”*”‘“ S
) A 4 WA + o hees oo
It follows that
I, .
Mo (n) = M, (n-{—l)(l-f—-“f)D = M_(n + 1).
r.'.+1 n+1
Since
A
1 =i __ik) ——n —
( )\n+1 Dn + Ak) n+1D'n+1 1,

applying Jensen's inequality to (18) yields

d!c {( AFc: ) -Dn ( D 1)
2t ek ¥ A nt
= 1 Mort) Dust O\ Aut1r41 i
D,
+ 1 +N) AMDM e("““ G, H)}

Ae ) dy ( D A & Do
- ke o An n+1 N1 Gg41 Ln+l !
( Ait1/ Dy HE g, + A1 Dra O\ Anetnt dri1
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Summing this inequality for 2 = 0,1, ..., n, we get that
hod D
My(n) £ Mo(n + 1) — —22— e(anﬂ,o ”“) < Mi(n + 1).
)\n+1Dn+1 dﬂ

Since the above argument is valid when 6 is any even continuous convex
function, we can take 6(x) = |u| to obtain, in addition, that

Mi(n) £ Mi(n + 1).
This completes the proof of Theorem 2.

Note. In all but Theorem 2 the condition that the sequences {/,} and
{M\.} be monotonic is redundant and was imposed only to avoid non-
essential and tedious complication in the proofs. Without the mono-
tonicity condition, but with {/,] distinct, Ao = lp =2 0, k¢ = 1 if [, = 0,
I,>0forn=1,2,...,identities and inequalities such as (5), (6) (using
(10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7)
can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1
remain valid. Removal of the monotonicity condition involves changes in
statements and proofs of lemmas as indicated below.

Statements.
LeEmMMA 1. Replace 0 < A < My1 by 0 < N < mings, Ay
LemMA 2. Replace 0 < ¢ < M\y1 by 0 < ¢ 5 N, for j > k, and

0 ( % 1 )f— wm( 1_)"1
Aip1 — ¢ :';m-l)\j—t by e Ay — ¢ f—zk;rl A — ¢ ‘

LeEMMA 3. Replace My < My1 by Ay # A; for n > j > 5, and

(A )( Al*j;)w by i!ﬁ(?\s)l( i p\—jlj—h—l)r_ﬂ-

j=s+1 A j=s+1

LemMa 4. Replace Ay < A1 by A 5 A for j > 5.
Proofs.

Lemma 1. Replace M1/ (Miyr — N) by max,se A/ (A; — A),and 1/M4
by max,sx 1/X;.

Lemma 2. In the inequalities replace v, by |v;| and ;1 by max;»|v,|.
Lemma 3. Replace \; — A, by |[A; — A,|.
Lemma 4. Replace 1/(M\iy1 — A;) by max,~; 1/|A; — Al, and take

A 3 I 1 r—1
o2 - Es)
Wnk ’( )\k+1 An j=zk;L1 P\j_ hs‘

Lemma 5. Replace A; < X;11 by A; # X forj > s.
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