MATRIX TRANSFORMATIONS OF WEAKLY MULTIPLICATIVE SEQUENCES OF RANDOM VARIABLES

DAVID BORWEIN

1. Introduction

Suppose throughout that $\{X_n\}$ (n = 0, 1, ...) is a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P) , and that $\{a_{nk}\}$ (n, k = 0, 1, ...) is a (summability) matrix satisfying

$$\sum_{k=0}^{\infty} |a_{nk}| < \infty \quad \text{for} \quad n = 0, 1, 2, \dots$$
 (1)

Let

$$b_{i_1 i_2 \dots i_n} = E(X_{i_1} X_{i_2} \dots X_{i_n}),$$

$$B_n(q) = \sum_{0 \le i_1 < i_2 < \dots < i_n} |b_{i_1 i_2 \dots i_n}|^q,$$

where the summation is extended to all integers $i_1, i_2, ..., i_n$ satisfying $0 \le i_1 < i_2 < ... < i_n$. Let

$$\sigma_n(p) = \left(\sum_{k=0}^{\infty} |a_{nk}|^p\right)^{1/(p-1)},$$

and let

$$T_n = \sum_{k=0}^{\infty} a_{nk} X_k.$$

The primary object of this paper is to establish the following two theorems concerning the almost sure convergence to zero of the sequence $\{T_n\}$.

THEOREM 1. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $0 < M < \infty$, let r be an even positive integer, and let

$$EX_n^r \leqslant M \quad for \quad n = 0, 1, \dots, \tag{2}$$

$$B_r(q) < \infty$$
 , (3)

$$\sum_{n=0}^{\infty} \sigma_n(p)^{r/q} < \infty . \tag{4}$$

Supported in part by the Natural Sciences and Engineering Research Council Canada Grant A-2983. Received 10 January, 1980.

365

Then

$$E\sum_{n=0}^{\infty}T_{n}^{r}<\infty$$

and, in particular, $T_n \to 0$ a.s.

Theorem 2. Let 1 , and let

$$|X_n| \le M \text{ a.s. } for \quad n = 0, 1, \dots,$$
 (5)

$$B_n(q)^{1/n} \leq M \quad for \quad n = 1, 2, ...,$$
 (6)

$$\sum_{n=0}^{\infty} e^{-\varepsilon/\sigma_n(p)} < \infty \quad \text{for every} \quad \varepsilon > 0 \,. \tag{7}$$

Then

$$\sum_{n=0}^{\infty} P[|T_n| > \varepsilon] < \infty \quad \text{for every} \quad \varepsilon > 0$$

and, in particular, $T_n \to 0$ a.s.

In Theorem 2 the conditions on the sequence $\{X_n\}$ are more restrictive whereas the conditions on the matrix $\{a_{nk}\}$ are less restrictive than in Theorem 1. It is easily demonstrated (see Hill [4]) that condition (7) is implied by either condition (4) or by

$$\sigma_n(p) < \infty$$
 for $n = 0, 1, ...$ and $\sigma_n(p) \log n \to 0$ as $n \to \infty$. (8)

Evidently condition (4) becomes less restrictive as p decreases. In §5 it is shown that condition (7) does likewise provided that

$$\sup_{n\geq 0}\sum_{k=0}^{\infty}|a_{nk}|<\infty.$$

The sequence $\{X_n\}$ is said to be *multiplicative* if $b_{i_1i_2...i_n}=0$ whenever $0 \le i_1 < i_2... < i_n$; in particular, it is multiplicative if it is independent with expectation $EX_n=0$ for n=0,1,.... The sequence is said to be weakly multiplicative if it satisfies condition (3) for some pair of positive numbers r,q.

Hill [3, 4] proved Theorems 1 and 2 for the special case in which p = q = 2, $\{X_n\}$ is the sequence of Rademacher functions on $\Omega = [0, 1]$ and P is Lebesgue measure. Azuma [1] proved Theorem 2 for the special case in which p = q = 2 and $\{X_n\}$ is multiplicative. Other results of a similar nature appear in Chapter 4 of Stout's book [8].

In §6 it is shown that when P is Lebesgue measure on $\Omega = [0, 1]$ then the sequence $\{\cos(k_n x + \alpha)\}$ on Ω satisfies condition (6) for every $q \ge 1$ provided c > 2 and $k_{n+1} \ge ck_n > 0$ for $n = 0, 1, \ldots$. The sequence is known to be multiplicative if $k_n/(2\pi)$ is an integer and $k_{n+1} \ge 2k_n > 0$ for $n = 0, 1, \ldots$

In $\S 7$ it is shown that the standard Cesàro and Euler summability matrices satisfy condition (4) for certain pairs of positive numbers r, p.

2. Preliminary results

Two lemmas are required.

LEMMA 1. Let $1 , let r be an even positive integer, let <math>\{a_k\}$ be a sequence of real numbers and let $\{X_k\}$ satisfy conditions (2) and (3). Then

$$E\left(\sum_{k=0}^{m} a_k X_k\right)^r \leqslant K\left(\sum_{k=0}^{m} |a_k|^p\right)^{r/p}$$
 for $m = 0, 1, \dots,$

where K is a positive number independent of $\{a_k\}, \{X_k\}$ and m.

This result is due to Móricz [6]; his proof is based on an inequality established by Gapoškin [2]. The case in which p = 2 of the following lemma is also due to Móricz [7]; our proof is modelled on his.

LEMMA 2. Let 1 , <math>u > 0, let $\{a_k\}$ be a sequence of real numbers, let $\{X_k\}$ satisfy conditions (5) and (6), and let

$$t_m = \sum_{k=0}^{m} |a_k|^p, \quad S_m = \sum_{k=0}^{m} a_k X_k.$$

Then

$$Ee^{uS_m} \leqslant Ce^{cu^pt_m}$$
 for $m = 0, 1, ...$

where C, c are positive numbers independent of $\{a_k\}$, $\{X_k\}$, u and m.

Proof. Let $B_n = B_n(q)$ and let

$$\beta > B = \limsup_{n \to \infty} B_n^{1/n}$$
,

the finiteness of B being ensured by condition (6).

Because of the convexity of e^{vx} we have, for every real v and $-1 \le x \le 1$, that $e^{vx} \le \cosh v(1+x \tanh v)$. Thus

$$Ee^{uS_m} = E \prod_{k=0}^m \exp(uMa_k X_k/M)$$

$$\leq \prod_{k=0}^{m} \cosh u M a_k \cdot E \prod_{k=0}^{m} (1 + \delta_k X_k)$$

where $\delta_k = \frac{1}{M} \tanh u M a_k$.

Next, since $\cosh t \leqslant e^{t^2/2} \leqslant e^{t^2}$, $\cosh t \leqslant e^{|t|}$, and $1 , we have that <math>\cosh t \leqslant e^{|t|^p}$ and so $\prod_{k=0}^m \cosh u M a_k \leqslant \prod_{k=0}^m \exp \left(u^p M^p |a_k|^p\right) = \exp \left(u^p M^p t_m\right)$. Further, by Hölder's inequality,

$$\begin{split} E \prod_{k=0}^{m} \left(1 + \delta_k X_k \right) &= 1 + \sum_{j=1}^{m} \sum_{0 \leq i_1 < i_2 < \dots < i_j \leq n} \delta_{i_1} \delta_{i_2} \dots \delta_{i_j} b_{i_1 i_2 \dots i_j} \\ &\leq \left(1 + \sum_{j=1}^{m} \beta^{jp/q} \sum_{0 \leq i_1 < i_2 < \dots < i_j \leq n} |\delta_{i_1} \delta_{i_2} \dots \delta_{i_j}|^p \right)^{1/p} \\ &\times \left(1 + \sum_{j=1}^{m} \frac{1}{\beta^j} \sum_{0 \leq i_1 < i_2 < \dots < i_j \leq n} |b_{i_1 i_2 \dots i_j}|^q \right)^{1/q}. \end{split}$$

Since $1+t \le e^t$ and $\tanh t \le t$ when $t \ge 0$, it follows that

$$E \prod_{k=0}^{m} (1 + \delta_k X_k) \leqslant \prod_{k=0}^{m} \left(1 + \beta^{p/q} |\delta_k|^p \right)^{1/p} \cdot \left(1 + \sum_{j=1}^{m} B_j / \beta^j \right)^{1/q}$$

$$\leqslant C \exp\left(\frac{1}{p} \beta^{p/q} \sum_{k=0}^{m} |\delta_k|^p \right) \leqslant C \exp\left(\frac{1}{p} \beta^{p/q} u^p t_m \right)$$

where
$$C = \left(1 + \sum_{j=1}^{\infty} B_j / \beta^j\right)^{1/q} < \infty$$
.

Collecting inequalities we arrive at the desired result, namely

$$Ee^{uS_m} \leqslant C \exp\left(\frac{1}{p}\beta^{p/q}u^pt_m\right) \exp\left(u^pM^pt_m\right) = Ce^{cu^pt_m}$$

where $c = M^p + \frac{\beta^{p/q}}{p}$.

3. Proof of Theorem 1

Let

$$T_{nm} = \sum_{k=0}^{m} a_{nk} X_k \,. \tag{9}$$

By Hölder's inequality and conditions (1) and (2), we have that

$$E\left(\sum_{k=0}^{\infty} |a_{nk}X_k|\right)^r \leqslant E\sum_{k=0}^{\infty} |a_{nk}| X_k^r \cdot \left(\sum_{k=0}^{\infty} |a_{nk}|\right)^{r-1}$$

$$\leqslant M\left(\sum_{k=0}^{\infty} |a_{nk}|\right)^r < \infty.$$

It follows that, for $n = 0, 1, ..., \sum_{k=0}^{\infty} a_{nk} X_k$ converges a.s. and so

$$\lim_{m\to\infty} T_{nm} = T_n \text{ a.s.}$$

Hence, by Fatou's Lemma and Lemma 1,

$$ET_n^r = E \lim_{m \to \infty} \inf T_{nm}^r \leqslant \lim_{m \to \infty} \inf ET_{nm}^r$$

$$\leqslant \lim_{m \to \infty} \inf K \left(\sum_{k=0}^m |a_{nk}|^p \right)^{r/p} \leqslant K \sigma_n^{r/q}.$$

Consequently, by condition (4),

$$E\sum_{n=0}^{\infty} T_n^r \leqslant K\sum_{n=0}^{\infty} \sigma_n^{r/q} < \infty,$$

as desired.

4. Proof of Theorem 2

Let u, ε be positive numbers. Then, for T_{nm} given by (9), we have, by Lemma 2, that

$$Ee^{uT_{nm}} \leqslant C \exp\left(cu^p \sigma_n^{p-1}\right),$$

where C, c are positive constants and $\sigma_n = \sigma_n(p)$. In view of conditions (1) and (5),

$$\lim_{m\to\infty} T_{nm} = T_n \text{ a.s.},$$

and hence, by Fatou's Lemma,

$$Ee^{uT_n} = E \lim_{m \to \infty} \inf e^{uT_{nm}} \le \lim_{m \to \infty} \inf Ee^{uT_{nm}} \le C \exp\left(cu^p \sigma_n^{p-1}\right).$$

Consequently, by Chebyshev's inequality,

$$P[|T_n| > \varepsilon] = P[T_n > \varepsilon] + P[T_n < -\varepsilon] \le e^{-u\varepsilon} (Ee^{uT_n} + Ee^{-uT_n})$$

$$\le 2C \exp(cu^p \sigma_n^{p-1} - u\varepsilon).$$

It follows, on taking $u = (\varepsilon/pc\sigma_n^{p-1})^{q/p}$, that

$$P[|T_n| > \varepsilon] \le 2C \exp\left(\frac{-\varepsilon^q}{q(pc)^{q/p}\sigma_n}\right),$$

and hence, by condition (7), that

$$\sum_{n=0}^{\infty} P[|T_n| > \varepsilon] < \infty ,$$

as desired. Since ε is an arbitrary positive number this implies that $T_n \to 0$ a.s. by a corollary of the Borel-Cantelli Lemma (see [8; Theorem 2.1.1.]).

5. Variation in strength of condition (#)

We shall prove the following.

Proposition 1. Let v > w > 1, and let

$$\sup_{n\geqslant 0}\sum_{k=0}^{\infty}|a_{nk}|=M<\infty.$$

Then $\sigma_n(w) \leq \sigma_n(v) M^{\delta}$ for n = 0, 1, ..., and $\delta = \frac{1}{w-1} - \frac{1}{v-1}$, hence condition (4) holds with p = w whenever it holds with p = v.

Proof. Let $\mu = \frac{v-1}{w-1}$, $\frac{1}{\lambda} + \frac{1}{\mu} = 1$. Then, by Hölder's inequality,

$$\sigma_n(w)^{w-1} = \sum_{k=0}^{\infty} |a_{nk}|^{w-1} |a_{nk}| \leqslant \left(\sum_{k=0}^{\infty} |a_{nk}|^{v-1} |a_{nk}|\right)^{1/\mu} \left(\sum_{k=0}^{\infty} |a_{nk}|\right)^{1/\lambda}$$
$$\leqslant \sigma_n(v)^{w-1} M^{1/\lambda},$$

and the desired inequality follows.

6. A weakly multiplicative sequence

Let P be Lebesgue measure in $\Omega = [0, 1]$, let α be any real number and let

$$X_n = \cos(k_n x + \alpha)$$
 for $x \in \Omega$, $n = 0, 1, ...$

We shall prove the following.

PROPOSITION 2. Let c > 2 and let $k_{n+1} \ge ck_n > 0$ for n = 0, 1, ... Then the sequence $\{X_n\}$ satisfies condition (6) for every $q \ge 1$.

Proof. By induction we have that

$$k_{n+1} \ge k_n + k_{n-1} + \dots + k_0 + k_0 (c-1)^n$$
 for $n = 0, 1, \dots$

Let $0 \le i_1 < i_2 ... < i_n = m$. Then

$$|b_{i_{1}i_{2}...i_{n}}| = \left| E \prod_{r=1}^{n} X_{i_{r}} \right| = \frac{1}{2^{n}} \left| E \prod_{r=1}^{n} \left(\exp\left(ik_{i_{r}}x + i\alpha\right) + \exp\left(-ik_{i_{r}}x - i\alpha\right) \right) \right|$$

$$= \frac{1}{2^{n}} \left| E \sum_{\varepsilon_{1} = \pm 1, \, \varepsilon_{2} = \pm 1, \, ..., \, \varepsilon_{n} = \pm 1} \exp\left(ix(\varepsilon_{1}k_{i_{1}} + \varepsilon_{2}k_{i_{2}} + ... + \varepsilon_{n}k_{i_{n}})\right) \right|$$

$$\leq \frac{2^{n}}{2^{n}} \frac{2}{k_{m} - k_{m-1} - k_{m-2} - ... - k_{0}} \leq \frac{2}{k_{0}(c-1)^{m}}.$$

Hence

$$B_{nm} = \sum_{0 \le i_1 < i_2 < \dots < i_n = m} |b_{i_1 i_2 \dots i_n}| \le {m \choose n-1} \frac{2}{k_0 (c-1)^m},$$

and so, for 0 < t < c - 2,

$$\sum_{n=1}^{\infty} B_n(1)t^n = \sum_{n=1}^{\infty} t^n \sum_{m=n-1}^{\infty} B_{nm} \le \frac{2}{k_0} \sum_{m=0}^{\infty} \frac{1}{(c-1)^m} \sum_{n=1}^{m+1} {m \choose n-1} t^n$$

$$= \frac{2}{k_0} \sum_{m=0}^{\infty} \left(\frac{1+t}{c-1}\right)^m < \infty.$$

Therefore $\sup_{n \ge 1} B_n(1)^{1/n} < \infty$, and since $B_n(q)^{1/q} \le B_n(1)$ for $q \ge 1$, it follows that $\sup_{n \ge 1} B_n(q)^{1/n} < \infty$, as desired.

Incidentally, it is evident from the above argument with c=2 that if $k_n/(2\pi)$ is an integer and $k_{n+1} \ge k_n > 0$ for n=0,1,..., then $b_{i_1i_2...i_n} = 0$ whenever $0 \le i_1 < i_2 < ... < i_n$, that is $\{X_n\}$ is multiplicative.

7. Applications of Theorem 1

(a) The Cesàro matrix C_{α} ($\alpha > 0$). This is the triangular matrix $\{a_{nk}\}$ given by

$$a_{nk} = \binom{n-k+\alpha-1}{\alpha-1} / \binom{n+\alpha}{\alpha}$$
 for $0 \le k \le n$; $a_{nk} = 0$ for $k > n$.

We shall prove the following result.

THEOREM 4. Let $r > q > 1/\alpha$ where r is an even integer and $q \ge 2$, and let $\{X_n\}$ satisfy conditions (2) and (3). Then $X_n \to 0(C_n)$ a.s.

Proof. It is familiar that, for $\mu > -1$,

$$\binom{n+\mu}{\mu} \sim \frac{n^{\mu}}{\Gamma(\mu+1)}$$
 as $n \to \infty$.

Hence, for $\frac{1}{p} + \frac{1}{q} = 1$,

$$\sigma_n(p)^{p-1} = \frac{1}{\binom{n+\alpha}{\alpha}^p} \sum_{k=0}^n \binom{k+\alpha-1}{\alpha-1}^p$$
$$= O(n^{p(\alpha-1)+1-p\alpha}) = O(n^{1-p}) \quad \text{as} \quad n \to \infty ,$$

since $p(\alpha-1) > -1$. Therefore $\sigma_n(p)^{r/q} = O(n^{-r/q})$ as $n \to \infty$, and so condition (4) is satisfied.

It follows, by Theorem 1, that

$$T_n = \sum_{k=0}^n a_{nk} X_k \to 0 \text{ a.s.},$$

that is $X_n \to 0(C_\alpha)$ a.s.

(b) The Euler matrix E_{α} (0 < α < 1). This is the triangular matrix $\{a_{nk}\}$ given by

$$a_{nk} = \binom{n}{k} \alpha^k (1-\alpha)^{n-k}$$
 for $0 \le k \le n$; $a_{nk} = 0$ for $k > n$.

We shall prove the following result.

THEOREM 5. Let $r > 2q \ge 4$ where r is an even integer, and let $\{X_n\}$ satisfy conditions (2) and (3). Then $X_n \to 0(E_\alpha)$ a.s.

Proof. It is known [9; p. 57] that $n^{1/2}a_{nk} \leq M_{\alpha}$ for $0 \leq k \leq n$, where M_{α} is a positive number independent of k and n. Hence, for $\frac{1}{p} + \frac{1}{q} = 1$, $n \geq 1$,

$$\sigma_n(p)^{p-1} = \sum_{k=0}^n |a_{nk}|^p \leqslant M_\alpha n^{-(p-1)/2} \sum_{k=0}^n a_{nk} = M_\alpha n^{-(p-1)/2},$$

and so $\sigma_n(p)^{r/q} = O(n^{-r/2q})$ as $n \to \infty$. Condition (4) is thus satisfied and consequently, by Theorem 1, $X_n \to O(E_{\alpha})$ a.s.

References

- 1. K. Azuma, "Weighted sums of certain dependant random variables", Tôhoku Math. J., 19 (1967), 357-367.
- V. F. Gapoškin, "On the convergence of series of weakly multiplicative systems of functions", Math. USSR-Sb., 18 (1972), 361-371.
- 3. J. D. Hill, "Summability of sequences of 0's and 1's", Ann. of Math., 46 (1945), 556-562.
- 4. J. D. Hill, "The Borel property of summability methods", Pacific J. Math., 1 (1951), 399-409.
- 5. J. D. Hill, "Remarks on the Borel property", Pacific J. Math., 4 (1954), 227-242.
- 6. F. Móricz, "On the convergence properties of weakly multiplicative systems", Acta Sci. Math., 38 (1976), 127-144.

- 7. F. Móricz, "The law of the iterated logarithm and related results for weakly multiplicative systems", *Anal. Math.*, 2 (1976), 211–229.
- 8. W. F. Stout, Almost sure convergence (Academic Press, New York, 1974).
- 9. J. V. Uspensky, Introduction to mathematical probability (McGraw Hill, New York, 1937).

Department of Mathematics,
The University of Western Ontario,
London,
Ontario,
Canada N6A 5B9.