MATRIX TRANSFORMATIONS OF WEAKLY
MULTIPLICATIVE SEQUENCES OF RANDOM VARIABLES

DAVID BORWEIN

1. Introduction

Suppose throughout that {X,} (n = 0,1,...) is a sequence of random variables
defined on a probability space (Q,#,P), and that {ag} (n,k =0,1,...) is a
( summability) matrix satisfying

Bl oo for =012 . (1)

k=0

Let
biliz...z,, i E(Xj] X,z...X‘ ) ;

b

Bn(q) = Z 1bitfg.‘.inlq [l

0sihi<in<..<lip

where the summation is extended to all integers ij,i,,...,i, satisfying

2 =y, o e 01 EG
@ 1p—1)
Gn(p) o (Z |ankp) H
k=0

]

and let

o0
I, = Z e X -
=0

k=

The primary object of this paper is to establish the following two theorems
concerning the almost sure convergence to zero of the sequence {7,}.

1 1
TaeoreM 1. Let 1l <p<2,— + —=1,0< M < w, let r be an even positive
integer, and let p 4
e M _for on=0,1..... (2)
B,(gq) < o, (3)
Y a(p) < . (4)
n=0
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Then

EY Tyew

n=0

and, in particular, T, — 0 a.s.

sl
THEOREM 2. Let 1 <p£2,;+;=1,0<M<oo,andlet

X, < Mas. for n=0,1,..., )
B(g)'"<M for n=1,2,.., (6)
Y e @< o forevery ¢> 0. 0
n=0

Then

P[|T)| > €] < o forevery &>0
=0

n
and, in particular, T, — 0 as.

In Theorem 2 the conditions on the sequence {X .} are more restrictive whereas
the conditions on the matrix {a,} are less restrictive than in Theorem 1. It is easily
demonstrated (sec Hill [4]) that condition (7) is implied by either condition (4) or by

o(p) < oo for n=0,1,... and op)logn -0 as n— . (8)
o
Evidently condition (@) becomes less restrictive as p decreases. In §5 it is shown that
condition (7) does likewise provided that

@
Sup Z |a'nk| < 0.
nz0 k=0

The sequence {X,} is said to be multiplicative if by, =0 whenever
0 < i, <iy.. <I,; in particular, it is multiplicative if it is independent with
expectation EX, =0 for n=0,1,.... The sequence is said to be weakly
multiplicative if it satisfies condition (3) for some pair of positive numbers r, g.

Hill [3, 4] proved Theorems 1 and 2 for the special case in which p = ¢ = 2,
{X,} is the sequence of Rademacher functions on Q = [0,1] and P is Lebesgue
measure. Azuma [1] proved Theorem 2 for the special case in which p = ¢ = 2 and
{X,} is multiplicative. Other results of a similar nature appear in Chapter 4 of Stout’s
book [8].

In §6 it is shown that when P is Lebesgue measure on Q = [0, 1] then the
sequence {cos (k,x+o)} on Q satisfies condition (6) for every g > 1 provided ¢ > 2
and k,,, = ck, > 0 for n =0,1,.... The sequence is known to be multiplicative if
k,/(2n) is an integer and k., = 2k, > O fotp =028 s
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In §7 it is shown that the standard Cesaro and Euler summability matrices satisfy

condition (4) for certain pairs of positive numbers r, p.

2. Preliminary results

Two lemmas are required.

LemMa 1. Let 1 < p < 2, let r be an even positive integer, let {a,} be a sequence
of real numbers and let {X,} satisfy conditions (2) and (3). Then

where K is a positive number independent of {a,}, {X,} and m.

=

0

r m ¥/ p
aka) < K( |ak|”> for m=0,1,...,
k=0

Thvis_result is due to Moricz [6]; his proof is based on an inequality established by
Gaposkin [2]. The case in which p = 2 of the following lemma is also due to Moricz
[7]; our proof is modelled on his.

LemMma 2. Let 1 < p < 2,u > 0, let {a,} be a sequence of real numbers, let{X,}
satisfy conditions (5) and (6), and let

m m

tm = Z ‘aklpa Sm =i Z aka'

k=0 k=0
Then
EeSmu i@ dop iy =010
where C iti ] "
, ¢ are positive numbers independent of {a}, {X,}, u and m.

Proof. Let B, = B,(q) and let

B > B = lim sup Bl'",

n—ow

the finiteness of B being ensured by condition (6).

5 Because of the convexity of ¢** we have, for every real v and —1 < x < 1, that
e < coshu(l+x tanhv). Thus

Ee®n = E || exp (uMa, X, /M)
k=0

< [] coshuMa, - E [ (1+6,X,)
k=0

k=0

, 1
- Where §, = I tanhuMa,.
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Next, since cosht L ol cosht <el and 1 <p<2, we have that
cosht < @ and so H coshuMa, < H exp (uf MP|a,|?) = exp (u” M*t,)). Further,
by Holder’s 1nequa11ty,

E l_[ (149, X)) =1+ Z

k=0 Jj=10<ihi<ih<..<ij<n

Yy 5,850-0,b;

iy

1/p
|6, 8y, - ..5,,|P)

nttq 1/g
x (1 + Z ‘J_ 2 ‘bhiz.,.jjiq) 9
Jj=1 <ij<n

00 <

< (1+ 'i prr 2

Ogcii<ib<..<iign

Since 1+t < ¢ and tanht < f when ¢ = 0, it follows that

m m 1/p & 3 Lig
ET] +8,X) < ] (Hﬁ”’“lcﬁkl”) -(1+ b3 Bf/ﬁ’)
k=0 i=1
1 P 1
< Cexp(l—)ﬁm Z |5k¥p) < Cexp (E ,B”f“uptm)
k=0

© 1y
where C = (1 + ) Bj/ﬁj) < .
=1

Collecting inequalities we arrive at the desired result, namely
uS, 1 / ctlly
Ee®m < Cexp| = pPuPt, |exp(ufM?t,) = Ce
p

ﬁplq

where ¢ = MP+ —

3. Proof of Theorem 1
Let

Iam 5 Z anka' (9)

k=0

By Holder’s inequality and conditions (1) and (2), we have that

r—1

E(Z Iankal) <E Z || XE(E |ank|)
k=0 k=0 k=0

s <
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oo

It follows that, for n = 0,1, ..., ) a, X, converges a.s. and so
k=0

limiT. = T, as.

m—roc
Hence, by Fatou’s Lemma and Lemma 1,

ET! = Elim inf T",, < lim inf ET",,

m— oo m—= oo

rip
< lim me( T |anklp) < Kd'4.
k=

m—co 0

Consequently, by condition (4),

s o
EYT,<KY i<,
=0

n=0

as desired.

4. Proof of Theorem 2

Let u, ¢ be positive numbers. Then, for T, given by (9), we have, by Lemma 2,
that

Ee'™m < Cexp (cuPoP™1),
where C, ¢ are positive constants and ¢, = ¢,(p). In view of conditions (1) and (5),

hm I = Toas:,

m-— oo
and hence, by Fatou’s Lemma,

Ee™ = Elim inf ¢ < lim inf Ee*" < Cexp (cuPo?™1).

Consequently, by Chebyshev’s inequality,
P(|T| > &] = P[T, > €]+ P[T, < —¢] < e “(Ee"T"+ Ee~*T7)

< 2Cexp(cuPol~t —ue).

It follows, on taking u = (g/pce?™1)¥?, that

_gq
PIT] >t & pcexpt——— 1.
[T > €] exp(q(pc)q,pan)
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and hence, by condition (7), that Let 0 < i, <i,.. < i, = m. Then

ni() PlT] = €] < oo, Byl = |E r]fl:l X, = % E rljl (exp (ik(-rx—l-ioc)—l—exp(——ikirx—ioc))
s o iy sl T -3 3 ekt )
5. Variation in strength of condition % s %km_km_l _fm_z 5 < ko(cz—l)'" .
We shall prove the following. Hence
ProrosiTiON 1. Let v > w > 1, and let By =0ﬂ <i2;“ <in:m|b"i2"'i"| S (RTI)I%U:%W“’

and so, for 0 <t < ¢—2,

18

lasg| = M= B

f ?

Then o,(w) < o,(v)M° for n =0,1,...,, and 6 = ——————, hence condition #
w—1 v—1

sup
nz0g=0

S B S Bl Sk '"f m .
n; P “n; :Z, "’""‘“koz(c—l)f" n1

m=n—1 m=0 n=1

_2 Ry
_k0m=0 c—1

Therefore sup B,(1)'* < oo, and since B,(q)"? < B,(1) for ¢ = 1, it follows that

nzl
sup B,(g)"" < oo, as desired.

nzl

holds with p = w whenever it holds with p = v.

v—1
=

+ — = 1. Then, by Hélder’s inequality,

ol =
=] -

Proof. Let u =

=

@ & Yus w i/
a W)™t = ¥ lagl” ! laul < (Z |l |ankl) (Z lankl)
= yel i Incidentally, it is evident from the above argument with ¢ = 2 that if k,/(27) is
< o, (0)* "I MY, an integer and k,,; 2k, >0 for n=0,1,.., then b, , =0 whenever
0<i, <i, <..<i,thatis {X,} is multiplicative.
and the desired inequality follows.
7. Applications of Theorem 1

6. A weakly multiplicative sequence (@) The Cesaro matrix C, (o > 0). This is the triangular matrix {a,} given by

Let P be Lebesgue measure in Q = [0, 1], let « be any real number and let
SR I W :
ank=<H i )/(n;a) for 0<k<n a,=0 for k>n.

X, =cos(k,x+a) for xeQ, n=0,1,.... a—1

We shall prove the following, We shall prove the following result.

TueorEM 4. Let r > g > 1/a where r is an even integer and q = 2, and let {X,}
ProposiTioN 2. Let ¢ > 2 and let k,.; = ck, > 0 for n = 0,1,.... Then the satisfy conditions (2) and (3). Then X, — 0(C,) a.s.
sequence {X,} satisfies condition (6) for every ¢ = 1. i i
Proof. It is familiar that, for g > —1,

Proof. By induction we have that

n+u n’
Kysy = k,+k,_(+...+ko+kolc—1) for n=0,1,.... g § el T
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1 " fk+a—1)\P
121 e S B A
G'n(p) n+oc)” kgo( a—1 )
o

= O(pfe- 1) = On' 7)) a8 #— 0,
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since p(a—1) > — 1. Therefore o,(p)"* = O(n~"¥) as n — oo, and so condition (4) is Canada N6A 5B9.

satisfied.
It follows, by Theorem 1, that

T = ). dypXy—Uas,

: k=0
that is X, — 0(C,) as.

(b) The Euler matrix E, (0 < o < 1). This is the triangular matrix {a,,} given by

i = (Z)a“(ua)"" for 0<k<n ay=0 for k>n.

We shall prove the following result.

TueoreM 5. Let r > 2q = 4 where r is an even integer, and let {X,} satisfy
conditions (2) and (3). Then X, — O(E,) as.

Proof. It is known [9; p. 57] that n'?a,, < M, for 0 < k < n, where M, is a

1 1
positive number independent of k and n. Hence, for 5 + & =1,nz=1,

n h
= lp— —(p-1)12
a(pP ! = ¥ laglt < Mnm¢7D2 kZO e = M,n~ 7 ,
k=0 =

and so o,(p)’? = O(n""*%) as n— . Condition (4) is thus satisfied and
consequently, by Theorem 1, X, — 0(E,) as.
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