ON THE RELATION BETWEEN THE LOGARITHMIC AND BOREL-TYPE SUMMABILITY METHODS

D. BORWEIN AND B. WATSON

1. **Introduction.** Suppose throughout that $\{s_n\}$ is a sequence of real numbers, $\lambda > -1$, $\alpha > 0$, and β is real. Let N be any non-negative integer such that $\alpha N + \beta > 1$.

We are concerned primarily with the logarithmic summability method L and the Borel-type method (B, α, β) . Some known results involve the Abel-type summability method A_{λ} . The methods are defined as follows. Let

$$L(x) = \frac{-1}{\log(1-x)} \sum_{n=0}^{\infty} \frac{s_n}{n+1} x^{n+1},$$

$$S(x) = \alpha e^{-x} \sum_{n=N}^{\infty} \frac{s_n x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)},$$

$$\sigma(x) = (1-x)^{\lambda+1} \sum_{n=0}^{\infty} s_n \binom{n+\lambda}{n} x^n.$$

If $L(x)(\sigma(x))$ exists for |x| < 1 and tends to s as $x \to 1-$, then we say that $\{s_n\}$ is L-convergent $(A_{\lambda}$ -convergent) to s and write $s_n \to s(L)(s_n \to s(A_{\lambda}))$.

If S(x) exists for $x \ge 0$ and tends to s as $x \to \infty$, then we say that $\{s_n\}$ is (B, α, β) -convergent to s and write $s_n \to s(B, \alpha, \beta)$.

The methods A_0 and (B, 1, 1) are the ordinary Abel and Borel exponential methods respectively.

A summability method P is said to be regular if $s_n \rightarrow s(P)$ whenever $s_n \rightarrow s$. The summability methods L, A_{λ} , and (B, α, β) are all regular. In addition, the following propositions are known.

PROPOSITION 1. If $s_n \to s(B, \alpha, \beta)$ and $\sum_{n=0}^{\infty} s_n x^n$ converges for |x| < 1, then $s_n \to s(A_{\lambda})$.

Proposition 2. If $s_n \rightarrow s(A_{\lambda})$, then $s_n \rightarrow s(L)$.

The first of these propositions was proved by Shawyer and Yang in [6], and the second by Borwein in [1]. The converse of each of the above propositions is false.

Supported in part by the National Research Council of Canada, Grants A-2983 and A-4646 Received by the editors August 14, 1978.

155

Propositions 1 and 2 yield:

PROPOSITION 3. If $s_n \to s(B, \alpha, \beta)$ and $\sum_{n=0}^{\infty} s_n x^n$ converges for |x| < 1, then $s_n \to s(L)$.

The purpose of this paper is to investigate the reverse problem. That is, assuming the L-convergence of a sequence, what Tauberian condition will imply its (B, α, β) -convergence?

2. The main theorem. Suppose that ϕ is a continuous and unboundedly increasing function on $[a, \infty)$.

A real-valued function f on $[a, \infty)$ is said to be slowly decreasing with respect to ϕ if $\lim\inf(f(y)-f(x))\geq 0$ as $y>x\to\infty$ and $\phi(y)-\phi(x)\to 0$, i.e. if, for each $\varepsilon>0$, there exist positive numbers δ and M such that $f(y)-f(x)>-\varepsilon$ whenever $y>x\geq M$ and $\phi(y)-\phi(x)<\delta$.

For the A_{λ} and (B, α, β) methods, Shawyer and Yang established the following Tauberian result in [7].

PROPOSITION 4. If $s_n \to s(A_{\lambda})$ and S(x) is slowly decreasing with respect to $\log x$, then $s_n \to s(B, \alpha, \beta)$.

We established the following result in [4] for the L and A_{λ} methods.

PROPOSITION 5. If $s_n \to s(L)$ and $\sigma(x)$ is slowly decreasing with respect to $\log \log x$, then $s_n \to s(A_{\lambda})$.

In the present paper we prove the following Tauberian theorem for the L and (B, α, β) methods.

THEOREM 1. If $s_n \to s(L)$ and S(x) is slowly decreasing with respect to $\log \log x$, then $s_n \to s(B, \alpha, \beta)$.

3. Preliminary results.

LEMMA 1. $s_n \rightarrow s(L)$ if and only if $\frac{\alpha(n+1)}{\alpha n + \beta - 1} s_n \rightarrow s(L)$.

This result is a simple consequence of Lemma 1 in [2]. Let

$$J(t) = \frac{1}{\log t} \int_a^{\infty} \frac{e^{-u/t}}{u} S(u) \ du \quad \text{for} \quad t \ge a > 1.$$

LEMMA 2. (i) If $s_n \rightarrow s(L)$, then $J(t) \rightarrow s$ as $t \rightarrow \infty$.

(ii) If L(x) exists for |x| < 1 and $J(t) \rightarrow s$ as $t \rightarrow \infty$, then $s_n \rightarrow s(L)$.

Proof. Suppose that L(x) exists for $|x| \le 1$. Then $s_n = O(c^n)$ for c > 1, and hence S(x) exists for all $x \ge 0$.

Let

19817

$$I(t) = \frac{1}{\log t} \int_0^a \frac{e^{-u/t}}{u} S(u) \ du \quad \text{for} \quad t \ge a.$$

Then

$$|I(t)| \le \frac{1}{\log t} \int_0^a \left| \frac{S(u)}{u} \right| du \to 0 \text{ as } t \to \infty,$$

since $S(u) = O(u^{\alpha N + \beta - 1})$ in (0, a) and $\alpha N + \beta - 1 > 0$.

Next we have, for $t \ge a$,

$$I(t) + J(t) = \frac{1}{\log t} \int_0^\infty \frac{e^{-u/t}}{u} \alpha e^{-u} \sum_{n=N}^\infty \frac{s_n u^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)} du$$

$$= \frac{1}{\log t} \sum_{n=N}^\infty \frac{\alpha s_n}{(\alpha n + \beta - 1)\Gamma(\alpha n + \beta - 1)}$$

$$\times \int_0^\infty e^{-u(1+t)/t} u^{\alpha n + \beta - 2} du$$

$$= \frac{1}{\log t} \sum_{n=N}^\infty \frac{\alpha (n+1) s_n}{(\alpha n + \beta - 1)(n+1)} \left(\frac{t}{1+t}\right)^{\alpha n + \beta - 1}$$

$$= \left(\frac{t}{1+t}\right)^{\beta - 1 - \alpha} \frac{-\log(1-T)}{\log t} \cdot \frac{-1}{\log(1-T)}$$

$$\times \sum_{n=N}^\infty \frac{\alpha (n+1)}{\alpha n + \beta - 1} \frac{s_n}{n+1} T^{n+1}$$

where $T = [t/(1+t)]^{\alpha}$, the inversion being justified since the final series is absolutely convergent. Also $(t/1+t)^{\beta-1-\alpha}$ and $-(\log(1-T)/\log t)$ tend to 1 as $t\to\infty$. In view of Lemma 1, the desired results follow.

LEMMA 3. Let $\gamma > 1$, t > 1, a > 0. Then

(i)
$$\frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u/t}}{u} du \to 0 \quad as \quad t \to \infty,$$

(ii)
$$\frac{1}{\log t} \int_a^t \frac{e^{-u/t}}{u} du \to 1 \quad as \quad t \to \infty,$$

(iii)
$$0 < \int_{-1}^{1} (e^{-u/t^{\gamma}} - e^{-u/t}) \frac{du}{u} < 1,$$

and

(iv)
$$\frac{1}{\log t} \int_{t}^{t\gamma} \frac{e^{-u/t^{\gamma}}}{u} du \to \gamma - 1 \text{ as } t \to \infty.$$

June

Proof. (i) $0 < \frac{1}{\log t} \int_{-\infty}^{\infty} \frac{e^{-u/t}}{u} du = \frac{1}{\log t} \int_{1}^{\infty} \frac{e^{-v}}{v} dv \to 0$ as $t \to \infty$.

(ii)
$$\frac{1}{\log t} \int_{a}^{t} \frac{e^{-u/t}}{u} du = \frac{1}{\log t} \int_{a/t}^{1} \frac{e^{-v}}{v} dv = e^{-a/t} \left(1 - \frac{\log a}{\log t} \right) + \frac{1}{\log t}$$
$$\times \int_{a/t}^{1} e^{-v} \log v dv \to 1 \quad \text{as} \quad t \to \infty.$$

(iii) By the mean-value theorem,

$$0 < \int_{a}^{t} \left(e^{-u/t^{\gamma}} - e^{-u/t} \right) \frac{du}{u} \le \int_{a}^{t} \left(\frac{u}{t} - \frac{u}{t^{\gamma}} \right) \frac{du}{u}$$
$$< \left(\frac{1}{t} - \frac{1}{t^{\gamma}} \right) \int_{0}^{t} du$$
$$= 1 - t^{1-\gamma} < 1.$$

(iv) By parts (ii) and (iii),

$$\frac{1}{\log t} \int_{t}^{t^{\gamma}} \frac{e^{-u/t^{\gamma}}}{u} du = \frac{\gamma}{\log t^{\gamma}} \int_{a}^{t^{\gamma}} \frac{e^{-u/t^{\gamma}}}{u} du - \frac{1}{\log t} \int_{a}^{t} \frac{e^{-u/t}}{u} du - \frac{1}{\log t} \times \int_{a}^{t} (e^{-u/t^{\gamma}} - e^{-u/t}) \frac{du}{u} \to \gamma - 1 \quad \text{as} \quad t \to \infty.$$

4. A general Tauberian result.

THEOREM 2. Suppose that the following conditions hold:

- (1) K(t, u) is defined, real-valued, and non-negative for t > a, $u \ge a$; moreover, $\int_a^\infty K(t, u) du$ exists in the sense of Lebesgue for each t > a,
- (2) $\int_a^\infty K(t, u) du \to 1$ as $t \to \infty$,
- (3) f is real-valued and continuous on $[a, \infty)$,
- (4) $F(t) = \int_a^\infty K(t, u) f(u) du$ exists in the Cauchy-Lebesgue sense for each t > a,
- (5) f is slowly decreasing with respect to ϕ ,
- (6) $\phi(t) \phi(t-1) \rightarrow 0$ as $t \rightarrow \infty$,
- (7) $\int_a^x K(t, u) du \to 0$ whenever $t \ge x \to \infty$ and $\phi(t) \phi(x) \to \infty$,
- (8) $\int_{x}^{\infty} K(t, u)(\phi(u) \phi(x)) du \rightarrow 0$ whenever $x \ge t \rightarrow \infty$ and $\phi(x) \phi(t) \rightarrow \infty$, and
- (9) F(t) = O(1) for t > a.

Then f(u) = O(1) for u > a.

This result was established in [3].

5. **Proof of Theorem 1.** Set $a = 1 + e^e$,

$$K(t, u) = \begin{cases} \frac{1}{\log t} \frac{e^{-u/t}}{u} & \text{for } t \ge a, u \ge a, \\ 0 & \text{otherwise,} \end{cases}$$

$$\phi(t) = \log \log t & \text{for } t \ge a, \\ f(u) = S(u) & \text{for } u \ge a. \end{cases}$$

Then

19817

$$\int_{a}^{\infty} K(t, u) f(u) \ du = J(t) \quad \text{for} \quad t \ge a.$$

We first show that the conditions of Theorem 1 imply that S(u) = O(1) for u > a

Conditions (1), (3), (5), and (6) clearly hold, and $\int_a^\infty K(t, u) du \to 1$ as $t \to \infty$ by parts (i) and (ii) of Lemma 3. Furthermore, the L-convergence of $\{s_n\}$ and Lemma 2 guarantee that F(t) exists and is bounded for t > a. In view of Theorem 2, to establish the boundedness of S(u) in (a, ∞) it suffices to prove that (7) and (8) hold.

To show that (7) holds, we observe that

$$\int_{a}^{\infty} K(t, u) du \le \frac{1}{\log t} \int_{a}^{x} \frac{du}{u} = \frac{\log x - \log a}{\log t} \to 0 \quad \text{as} \quad t \ge x \to \infty$$

and

$$\log\log t - \log\log x \to \infty.$$

To show that (8) holds, we note that

$$\int_{x}^{\infty} K(t, u)(\phi(u) - \phi(x)) du = \frac{1}{\log t} \int_{x}^{\infty} \frac{e^{-u/t}}{u} (\log \log u - \log \log x) du$$

$$\leq \frac{1}{\log t} \int_{x}^{\infty} \frac{e^{-u/t}}{u} \left(\frac{u - x}{x \log x}\right) du$$

$$\leq \frac{1}{x \log x \log t} \int_{x}^{\infty} e^{-u/t} du$$

$$= \frac{te^{-x/t}}{x \log x \log t} \to 0 \quad \text{as} \quad x \geq t \to \infty.$$

Suppose, as we may without loss of generality, that $s_n \to 0(L)$. Then, by Lemma 2, $J(t) \to 0$ as $t \to \infty$. It remains to show that $S(u) \to 0$ as $u \to \infty$.

Assign $\varepsilon > 0$. Since S(u) is slowly decreasing with respect to ϕ , there exist numbers $x \ge a$ and $\delta > 0$ such that $S(u) - S(t) > -\varepsilon$ whenever $u > t \ge x$ and $\log \log u - \log \log t < \delta$. Equivalently, setting $\gamma = e^{\delta}$,

(10)
$$S(t) - \varepsilon < S(u) \quad \text{whenever} \quad x < t < u < t^{\gamma}.$$

[June

Relation (10) implies that, for t > x,

$$I_{1} = \frac{1}{\log t} \int_{t}^{t^{\gamma}} \frac{e^{-u/t^{\gamma}}}{u} (S(t) - \varepsilon) du$$

$$\leq \frac{1}{\log t} \int_{t}^{t^{\gamma}} \frac{e^{-u/t^{\gamma}}}{u} S(u) du = I_{2}.$$

Now, by Lemma 3, and the fact that S(u) = O(1),

$$I_2 = \gamma J(t^{\gamma}) - J(t) - \frac{\gamma}{\log t^{\gamma}} \int_{t^{\gamma}}^{\infty} \frac{e^{-u/t^{\gamma}}}{u} S(u) du$$

$$-\frac{1}{\log t} \int_a^t \frac{e^{-u/t^{\gamma}} - e^{-u/t}}{u} S(u) du + \frac{1}{\log t} \int_t^{\infty} \frac{e^{-u/t}}{u} S(u) du$$

$$= o(1) \quad \text{as} \quad t \to \infty.$$

Further, by part (iv) of Lemma 3,

$$I_1 = (S(t) - \varepsilon)(\gamma - 1 + o(1)).$$

Hence

$$S(t) - \varepsilon \leq \frac{I_2}{\gamma - 1 + o(1)} = o(1),$$

and therefore

$$\limsup_{t\to\infty} S(t) \leq \varepsilon.$$

Rewriting (10) we get

(12)
$$S(u) < S(t) + \varepsilon$$
 whenever $x < t^{1/\gamma} < u < t$.

Relation (12) implies that, for $t^{1/\gamma} \ge x$,

$$I_3 = \frac{1}{\log t} \int_{t^{1/\gamma}}^{t} \frac{e^{-u/t}}{u} S(u) du$$

$$\leq \frac{1}{\log t} \int_{t^{1/\gamma}}^{t} \frac{e^{-u/t}}{u} (S(t) + \varepsilon) du = I_4.$$

By Lemma 3 (with t replaced by $t^{1/\gamma}$) and the fact that S(u) = O(1),

$$I_{3} = J(t) - \frac{1}{\gamma} J(t^{1/\gamma}) - \frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u/t}}{u} S(u) du$$

$$- \frac{1}{\log t} \int_{a}^{t^{1/\gamma}} \frac{e^{-u/t} - e^{-u/t^{1/\gamma}}}{u} S(u) du + \frac{1}{\log t} \int_{t^{1/\gamma}}^{\infty} \frac{e^{-u/t^{1/\gamma}}}{u} S(u) du$$

$$= o(1) \quad \text{as} \quad t \to \infty.$$

1981] Also

$$I_4 = (S(t) + \varepsilon) \left(1 - \frac{1}{\gamma} + o(1)\right).$$

Hence

$$S(t) + \varepsilon \ge \frac{I_3}{1 - 1/\gamma + o(1)} = o(1),$$

and therefore

(13)
$$\liminf_{t\to\infty} S(t) \ge -\varepsilon.$$

It follows from (11) and (13) that $S(t) \rightarrow 0$ as $t \rightarrow \infty$, and this completes the proof.

REFERENCES

1. D. Borwein, On methods of summability based on power series, Proc. Royal Soc. Edinburgh 64 (1957), 342-349.

2. —, A logarithmic method of summability, Journal London Math. Soc. 33 (1958), 212-220.

3. — and B. Watson, Tauberian theorems on a scale of Abel-type summability methods, Journal für die Reine und Angewandte Mathematik 298 (1978), 1-7.

4. —, Tauberian theorems between the logarithmic and Abel-type summability methods, submitted for publication.

5. G. H. Hardy, Divergent Series, Oxford (1949).

6. B. L. R. Shawyer and G. S. Yang, On the relation between the Abel-type and Borel-type methods of summability, Proc. Amer. Math. Soc. 26 (1970), 323-328.

7. —, Tauberian relations between the Abel-type and the Borel-type methods of summability, Manuscripta Math. 5 (1971), 341-357.

THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO, CANADA

MEMORIAL UNIVERSITY OF NEWFOUNDLAND St. John's, Newfoundland, Canada