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THE HAUSDORFF MOMENT PROBLEM

BY
DAVID BORWEIN

1. Introduction. Suppose throughout that
- 1
0=A,<:+ ' <A, A, —>00, g R
n=1"n

and that {u,} (n=0) is a sequence of real numbers. The (generalized) Haus-
dorff moment problem is to determine necessary and sufficient conditions for
there to be a function x in some specified class satisfying

1
p"=J tdx(f) for n=0,1,2,....
0

Edleadd, - (e,

1 1
Dy=gd4=1, Dnidg-l-d-r-l----—-l—d;:(1+-A—l)- --(1+A—n).

Define the divided difference [y, . . ., u,] inductively by [, ]= .,

[nu'k; w4 g Mrl—l]_[“k+1’ s P‘n]

for O0=sk<n
)‘ngkk

[lu'ks-‘°7”'*n]:

For O0=sk=n, 0=r=1, let

Amk = Alc—¢—1 e ’\'ln[“'b w2 I-Ln]:
Ank(t) =/\k+1 Tt A'm[tj\ks s wiy th"]

with the convention that products such as A, -+ A, =1 when k=n. Let

n p—1y 1/p
(5l (Z)7)7 it 1=p<es

= k=0 dk
pn D,
Snax || ‘d‘k‘ if p=oo;
M, =sup M,
n=0
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258 D. BORWEIN [September

Let C be the normed linear space of functbns x continuous on [0, 1] with
norm ||x|lc =supy<,<; |x(t)]. Let BV be the space of functions of bounded
variation on [0, 1]. A function x € BV is said to be normalized if x(0)=0 and
2x()=x(t+)+x(t—) for 0<t<1. For p=1, let L, be the normed linear space
of measurable functions x on (0, 1) with finite norm ||x||, where

1 i/p
(L |x(e)P dt) when 1=p<oo,

llfl, =

ess.sup |x(©| when p=o,
0=<t<1

It is known that M, <cc if and only if there is a funcion a € BV satisfying
1
(1) u,,=I t*da() for n=0,1,2,....
(4]

The case A,=0 of this result was established by Hausdorff [5], [6] and
Schoenberg [12] subsequently gave a different proof. The case A,>0 was
proved by Leviatan [9] (see also Endl [4]).

It can be deduced from theorems of Leviatan [9, Theorem 2.3; 10, Theorem
1 and Theorem 2] (see also Berman [3]) and identity (5) (below) that, for
1<p=w, M, <« if and only if there is a function B €L, satisfying

1 ¢
(2) fyy = L B dt for n=0,1,2,....

The case A, =n for n=0, 1,2, ... of this result is due to Hausdorff [7]. In this
case we have that for Osk=n, 0=t=1,

m@=RIF =0 = (C)E

where A%, = e, A" =A™y — A .

In this paper we give new and reasonably self-contained proofs of the above
results. Our proofs involve functional analysis and differ radically from those of
the above-mentioned authors. Unlike previous proofs, ours do not treat the
cases Ap=0 and Ay;>0 separately.

In addition, we show that if (1) holds with a normalized, then M, = [} |da(?)]
when A, =0, and M, =3 |da(t)| — |a(0+)| when A,>0. We also show that if (2)

holds for 1<p=w, then M, =||B|,. Finally, we show that M,, increases with n

and hence that M, =lim,_,..M,, for 1=p=ow. The cases A,=n for n=

0,1,2,...of these results are derived in a book by Shohat and Tamarkin [13,
pp. 97-101]. This book, incidentally, gives an excellent and extensive review of
the classical moment problem. Another good reference book on the subject is

one by Akhiezer [1].
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2. Preliminary results. The following simple identities and inequalities are
known:

P 3 . As /\s

(3) TR _kgo f\nk(l /\k+1) i (l—x:) for O=s=n. [6, (5)]
(4) 0=A, (=) Mu()=1 for O=<t=<1, O=s=<n

k=0

[10, Lemma 1]
1
d

(5) L/\nk(l‘) dt=5-': for O=sk=n. [6, p. 294]

We require some lemmas,

Lemma 1. If M, <, then
. n D )\,
pe=1lim 3 )\nk(—'ﬁ) for s=0,1,2,....
=0
Proof. Let A>0, u, =e M\,

¢n(’\-) = Z Ankuk+1 e u"_,
k=0

and let

n
¥, = Z AukU1 " * " 0,
k=0

- where v, =e "™ for sufficiently large n and y,—>A as n—> o,

Let 0<e <A. Then, for §>0, |y—A|<e, we have that

le™—e <5 |y—A|edro<E
—&

C'h.On.(_?Se a positive integer N so large that h/n—;\]<s for n> N. Then. for
n=>N, we have that ’

N-1 n
W =6 I=M; T [ors+ vp=thers - s +—— 3 Al
k=0 A—ge o
* U,—0 and v, —0 as n—», it follows that

lim sup |, — b, (A)] < 22
h3co A—e¢

lim (4, — 6, (1)) =0.
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Note that when v, =1—A/A,, then, by (3), the corresponding ¢, = ks for n=s.
Thus

lim bn(A) = s

The desired conclusion is now obtained by considering the i, corresponding to

i
(ER (1 +‘A—n) .

tion o€ BV, then M, = {3 |da(t).
sfied by a function B €L, then M, =||8ll,-

LemMa 2.
@) If (1) is satisfied by a func
(i) If 1<p=w and (2) is sati

Proof. Part (i). We have that

1
A = L Au(D) da(f) for 0=k=n,

and thus, by (4), that A ) .
5 = [ ldatol X A= [| 1aaco.
=0 k=0

Hence X
M, = L |da (D).

Part (ii). We now have that

Ak = Ll)tnk(t)B(t) dt for 0=k=n

Hence, by (5), . .
Pl [ Aun(0 18O de= 5 e sup 18O

Next, if 1<p <, then, by Holder’s inequality and (5),
1 1
e = [ 2@ 18P ([ 20 )

B %) L]f\w) B dr;

p—1

and so, by (4), :
n ” Dn p—1 " 1 " n - 1 " dt
5 b () =] 1B0Far b0 [ 180

Consequently, if 1<p=, then M, =18l
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Lemma 3. If a normalized function x € BV is such that
1
J tdx(t)=0 for n=0,1,2,...,
(8]
then x(t) = x(0+) for 0<t=1. If, in addition, A,=0, then x(0+)=0.

Proof. Suppose first that A,=0. A known consequence of the hypothesis
[11, p. 337] is that

1
Jt"dx(r)mﬂ for n=0,1,2,....
0

Hence, by a standard result [14, Theorem 6.1], x(£)=0 for 0=¢=<1.
Suppose next that A,>0. Then, by hypothesis,

1
JIA“_A°dY(t):O for n=0,1,2,...,
0

where y(t) =, u dx(u). Since y is normalized [14, Theorem 8b], we have, by
the part already proved, that y(#)=0 for 0=t=<1. Let 0<e=t=1. Then

t 13
0= I uto dx(u) = trox(t) — e*ox(e) = J u™ " tx(u) du
and so x is absolutely continuous in [g, 1]. Therefore 0={* utox'(u) du and
consequently x'(u) =0 a.e. in (g, 1). It follows that x(f) =x(¢) for 0<e<t=<1,
and hence that x(¢) = x(0+) for 0<t=1.

This completes the proof of Lemma 3.

3. The main results. The proofs of both parts of the following theorem are
based on proofs in Shohat and Tamarkin’s book [13, pp. 99-101] of the case
A,=nfor n=0,1,2,.... Hildebrandt [8] originally proved this case of part (i)
by a similar method.

THEOREM 1.
() If M, <o, then there is a normalized function « € BV such that (1) is
satisfied and [ |da ()| < M,.
- () If 1<p=c and M, <w, then there is a function BeL, such that (2) is
~ Satisfied and ||B||, = M,.

Proof. Define A to be the linear space of functions P such that
P(t)= ) at for O=t=1,
k=0

Wiere m is an arbitrary non-negative integer and ao, a, ..., a4, are real
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constants. Define the moment operator . on A by setting

w(P)= Y aum.

k=0

when P is given by (6).
Suppose that M, < where 1 =p=w. Let Pe A and let B, € A be given by

B.()= ). /\nk(t)P(%) for o=t=1.
k=0 n
Then

™ wB)= 5 (D).

and hence, by Lemma 1,

®) lim 42(B,) = w(P),

since, by Holder’s inequality, M; =M,,.
Part (i). It follows from (7) that
|u(B,)l =M, |[Pllc
and hence, by (8), that
| (P)| = M,||P||c.

Thus w is a bounded linear functional on a linear subspace of C. Hence, by the
Hahn-Banach theorem [11, Theorem 5.16] and the Riesz representation
theorem for bounded linear functionals on C [2, p. 61], there is a normalized
function « € BV such that, for every Pe A,

1 i
p(P)= L P(t) dee(t) and L |de(t)] = M.
In particular, taking P(f)=t*, we get that

1
p.,,=Lt""da(t) for n=0,1,2,....

Part (ii). Let (1/p)+(1/q)=1 where 1< p=. Applying Holder’s inequality to-
(7) we get that

L | D q\ l/q
=M 3 2 1))
k=0*+~n n
Since
d. _ B 1
S p "Ly, oA ) TR
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the term multiplying M, in the inequality tends to [§(|P(6)|? dr)"/9. In view of
(8), it follows that

‘F'(P)l SMP ”P”q

Thus p is a bounded linear functional on a linear subspace of L,. Hence, by the
Hahn-Banach theorem and the Riesz representation theorem for bounded

linear functionals on L, [2, pp. 64, 65], there is a function B € L, such that, for
every PeA,

w®)= [ POBO &t and Bl =0,

In particular, taking P(t)=t*, we get that
1
,u,,,=_L B dt for n=0,1,2,....

This completes the proof of Theorem 1.
Combining Lemma 2 and Theorem 1 we obtain:

THEOREM 2.
(i) M, < if and only if (1) is satisfied by a function « € BV.
(ii) For 1<p=%, M, <« if and only if (2) is satisfied by a function B € L,.

The next two theorems give more precise information about M,.

THEOREM 3.
(@) If (1) is satisfied by a normalized function o € BV, then

1
(a) M1=L |da(t)] when Ay=0,

1
® M, =L |da ()|~ (04)| when Ag>0.
(i) If 1<p=w and (2) is satisfied by a function B e L,, then M, =|8|,.

Proof. Part (i). By Lemma 2(i), we have that M, =j |da(f)| <. Hence by
Theorem 1(j), there is a normalized function & € BV such that u,, = [} t* da(t)
for n=0,1,2,... and f} |da(t)|=M,.

If A,=0, then, by Lemma 3, &(t)=a(t) for 0=t=1, and hence M,=
§6 |da(r)].

Suppose that A;>0, and let ¥(0)=0, y(t) = a(t)—a(0+) for 0<t=1. Then
#, =[5 t*~dy(t) for n=0,1,2,... and hence, by Lemma 2(1), M, =</} |dy(?)|.
Further, by Lemma 3, y(t)=a(t)—&(0+) for 0<t=1, and so, since y(0+)=
v(0)=0, we have that M; <[5 |dy(t)| <[} |da(t)|=M,. Hence M, = [}|dy(1)|=
§o |da(r)| —|a(0+)].
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Part (ii). By Lemma 2(ii), we have that Mpxﬁ;\”q“p <o, Henie(,) l:iy ;‘heorem
1(ii), there is a function 8 € L, such that B =[5 t"B(t) dt f2r1n ~d,h 3 Ce B(?;IE
|8ll, =M, By Lemma 3, fi, B(u) du =1 () du for 0=t= 3 al: Mei o .
B(1) a.e. in (0, 1). It follows that M, =<||8|, =||Bll, =M, so that M, =||B|,.
This completes the proof of Theorem 3.

Tueorem 4. If 1=p=w®, then M, =M, .., forn=0 and lim,_,.. M,,, = M,.

Proof. Let 0=k =n. Then

Lt s B )= Llipsasa osiBianal
A1k = A1 ® " Angr N
/\n+1 Ak+1 I\
- . n+1,k+1
)‘n+1'—Ak % j\'n+1—'Ak N
and hence
Ay A1
=(1- +TEEL ) e
(8) j\nk — (1 )‘“+1) ’\'n+1,k - +1,k+1
It follows that
Rk (1 Vg ) An+1,k+( 1, A )AZLH
dk ArH~1 dk ’\'n+1 ’\n+1 k+1
and hence that
i
e @ n+1+
MW,HEMM,n-‘}-l ,\n+1 D“+1

Finally, for 1=p <<, application of Holder’s inequality to (8) yields that

)‘k+1

2 ) P A4

1— p—1
D I di = (1- Ansscoal i | DB

AI'l+1 n+1
since
Me Mesidin_y . 1 _Dan
1— =1+ T,
)‘n+1 Ar|+1 dk /\n+1 n

Summing the above inequality for k=0, 1, ..., n, we get that

p—1

A e
M];n sMg,n-i—l __A_HQ_ P‘1'14‘1,0‘[" d(]J pDn+1 = Mg,n—i—l-

n+1

This completes the proof of Theorem 4.
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