ON THE ABSOLUTE SUMMABILITY OF STIELTJES
INTEGRALS

D. Borwminf.

[Bxtracted from the Journal of the London Mathematical Society, Vol. 29, 1954.]

1. It is supposed throughout that A = 0 and that x(¢) is a real function
having bounded variation in every finite sub-interval of [1, ).
Bosanquet has shown] that, when A is an integer, the conditions

(i) k() is continuous for t =1,

(i) frllk(t)ldt<oo,

(i)’ rt"|dk(’0 (#)] < oo,
1t

1 Received 2 February, 1954; read 18 February, 1954.
1 Bosangquet [3], Theorem B.
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are sufficient to ensure the truth of the proposition:
J‘ k(t)dz(t) ts summable | C, A-4-1| whenever J dx(t) is bounded (C, ))
1 1

in (1, ).

My object in this paper is to prove that, for any A, conditions (i), (ii)
and the condition

(iii) there is @ number ¢ (=1) and a funclion h(u) such that

() = I‘(A;H) r (u—1t) dh(u)

t

ke i j | dh(1)| < oo,

are both necessary and sufficient for the above proposition to be true,
Series analogues involving integral orders of summability have been
established by Fekete and Bosanquet®*.
Given any function g(¢) integrable L in every finite sub-interval of
(1, ), we shall write

B =90, 0.00= 05 [ C—ortg@an 621, 4> 0);

we shall also use this notation with z in place of g.
It is well knownfi that if

9) = b daw) (1),

where k(u) is continuous for « > 1 and z(1) = 0, then, for pn=0,t221,

0u0) = 1, [, = b dat).

2. Lmwual. If p>0, g0, r>—p and [ du(t)=0w) (C, p) in
1

* Fekete [5]; Bosanquet [2], Theorem 3. I have been informed by Dr. Bosanguet
that H. C. Chow has recently obtained results of a similar character for series involving
ractional orders of summability. (See preceding paper.)

t For this result and for the meaning of the summability notation used see Bosanquet
31

i Cf. Sargent [7)], Lemma 6,

s 4
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(1, o0), then there are numbers H and K, independent of v and w, such thai

‘ ‘r: (w—2)? (v—1t)2 da(t) ‘ < Hum+r o1,

j“’ (w—t)? {(v—t)i— (v—w)s} du(t) } < Kup+r+1 (a1 oa-1),
1

whenever v =w = 1. 7
Suppose, without loss in generality, that (1) =0, and let

M = bound w2~ |z, (w)|.
w21

Note that, for v 2w > 1,

w? when 0<{g¢g<Cl,
0 vli—(v—w)2 <
35 ; e quwv?l when g¢>1.

When p = 0%, we have, forv>w>1,

‘ r (v—t)?dz(t) | < v?bound
1

&
5 da(t) | < Mviwr,
1 éisw

1

< {v?— (v—w)?} bound
1<¢<w

F dx(t) ‘

1

‘ jw {(v—1)2— (v—w)?} da(t)
< M (we+quvtt) wr,

from which the required results follow.
Suppose now that p = n-+-8, where n is a positive integer or zero and

0<8<1, and that » >w> 1. Integration by parts yields:

w W dn+1
|} o=t (r—tedo() = (=17 2 () g {0t -1}t
n+1
= X ¢,J,,
1]

&=

where ¢, is independent of v and w and

Je— r (w—t)ie—1 (v—t)e—2 g, () dt;
1

n+l
Z ey dy

8=1

jw (w—1t)? {(v—1)2— (v—w)G da(f) = co L+
1
where ¢, and J, are as above and

1= o= {0t~ (0wt} (1
1 .

* See Widder [8], 18,
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Applying the second mean value theorem and Riesz’s mean value
theorem, we find that*

IJal = (ﬂ)s'”q

v

j@mﬂH%mw10<a<m

w s
< (—) 2 bound
v 1<é<sw

[ —orrantyae]
< MT() (%)sme;

|1|= fr— = | [ty 2,0 (1 <E<w)

< MT(8) (w4 quw?1) wetr,

The truth of the lemma is now evident.

3. TarorEM 1. If

(1) k(t) is continuous for t =1,
(i) f 1| k(t)| dt < oo,
(iii) for some mumber ¢ (=1),

g (w—1t) dh(u)

1
k0= o)

whenever t = ¢, where

r u*| dh(u)| < oo,
(iv) EMM:MDWJHnmwx

then 5 k(t)de(t) is summable |C, A+1].
E
Suppose, without real loss in generality, that ¢ =1 and (1) =0, and

write, for v < 1,

P@) =L (— i) th(t) de(t), Qv) = k(o) L (w—t) tda ().
For w>1,

5'1” (1_%) S R delt) = (A1) j:’k(t) da(t) f (1_%) “o-dv

=01 | -1 P avs

* (f. Borwein [1], 312.

"

-

3
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from which it follows that the sﬁmma.bility | C, A+1]| of j k() dz(t) is
1
equivalent to the convergence of

r v-2| P(v)|dv.
ik

We shall consider two cases.

A. Suppose that A= 0. Then, for v > 1,

Y t
P®)—Q(v) = —E dk(t) Ludm(u).

1

In view of (iv) there is a number M such that, for ¢ =1,

Yludw(u) |= ltw(t)—ﬁx(u) du} < M.

Consequently

r o=2| P(v)— Q(v) | dv < M r vt dy j”u] dk(w)|
J1 1

1

—M rldk(u)l :Mr\dh(u)] <.
1 1
Further, r v 2| Qv)|dv < M r v~ k(v) | dv << oo,
1 1
Hence r v2| P(v)|dv < oo,

and this is the required result.

B. Suppose that A> 0. It follows from (iii) that
5 (u—tp| dhw)| <o (t3=1),
t
and hence, by Fubini’s theorem for Lebesgue-Stieltjes integrals, that

e e r (w—oP-1dh(w) (3> 1).

o),

Consequently k(f) is absolutely continuous in every finite sub-interval of
[1, ©), k() 0 ag t— oo, and, for almost all ¢ in (1, o0),

i ﬁ\) f (w—tp-1 dh(w).
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Now, for » > 1,

Pv)—Q(v)= Hj,: K (t)dt ﬁ (v—u) udx(u)

ﬁ 5: di K ('w—t)".—1 dh(w) ji (v—u) uwdz(u)

i P—?)‘-) L dt r (w—2)L dh () ﬁ (o s s ()
(A ey j dh(w)j (—uP (r—w) ud()

+I‘(A+1}J dh(1 )J (r— ) {(w—uP— (w—v)} wda(u);

the changes in order of integration being easily justified by Fubini’s
theorem and, where infinite ranges are 1nvolved by the convergence of

j | dh(aw) |-

Since j dz(t) is O(1) (C, A) and, a fortiori, O(1) (C, A+1) in (1, ),

it follows from the Lemma that there is a number H such that, for
v=2w=>=1,

\ r (w—u)* (v—u) ude(u) ‘
1
= [ w Jw (w—u) (v—u)* dx(u) kr (w—u) (v—u) dx(u)
ik A
S HT (A1) wr et
Similarly, there is a number K such that, forw >v > 1,
' r (r—uP {(w—u)— (w—v)"} u dz(u) ‘ S KT (A4-1) 022 (- 14pr1),
1
Consequently
r 232 P(0)— Q(v)| dov
1
<H j oS dy 5 WM dh(w) |+ K f Pty f{dh(w)i
K L dv L w1| dh(w)|
< HEAEOD) | 0 |ahu)] <oo.

&= o=
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Further, in view of (iv), there is a number M such that, forv > 1,

1Q(v)| = | v k() L (v— 1) de () — ke (v) L (v— 1 da(t) | < M| k(v)[;

and so 5v"“2|Q id@;<Mj v k(v)|dv < 0.

Tt follows that j v P(v)| do < o,
1

and the proof of the theorem is thus completed.

4. TaHEOREM 2. Ifj k(t) dx(t) is summable | C, A1 whenever r dx(t)
i i
18 summable (C, N), then*

(i) k(t) is continuous for t =1,
(ii) }' 1] k() | dt < oo,
1
(ii) there is a number ¢ (= 1) and a function h(w) such that
1 o0
k(t) = P‘(mL (u—t)" d’h(u)

for i =c, and Jw uw* | dh(u)| < co.

w
Since, for any w > 1, j k(t)dxz(t) exists in the Riemann-Stieltjes sense
1
w henever «(t) is of bounded variation in [1, w], we immediately deduce (i).

t
It follows from the hypothesis, on putting m(t)zj Sf(u)duw, that
1

[ k(t) f(¢) dt is summable | ¢, A41| whenever j f(¢)dt is summable (C, X).
1 1
Sargent has shownt that in consequence of this there are numbers ¢, [ and

a function %(u) such that ¢ > 1, J w*|dh(u)| < co and

8(2) — Iﬁf (u—t) dh(u)

is equivalent, for { > ¢, to k(t)—1I.

X
* It is to be understood that J k() dz(t) exists as a Riemann-Stieltjes integral for
1
every X > 1.
1 Sargent [7], Theorem 1.
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When A = 0, 8(f) is of bounded variation in [e, o0) and tends to zero as
t—o0; and, since k(?) is continuous for t = ¢, it follows easily that*

r|dk(u)i<oo and k(t)——l:—rdk(u) {t = c).

When A > 0, 8(¢) is continuous for ¢ > ¢ and so in this case
E(t)—l=6(@) (t=c).
We have thus established (iii) with k(¢#)—! in place of k(¢). Since it

ool

follows that k(t)—! as {—co, it remains only to prove 5 1| k(t) | dt
t

convergent, for this will ensure that /=0. :
Note that in the proof of Theorem 1 no use was made of the convergence

of 5 1| k(t)| dt in establishing the convergence of
1

F: v=2=2| P(v)—Q(v)| dw.

Consequently, we can now deduce that 5 v 2 dw
1

k() ﬁ (v—1) tda(t) | is

convergent whenever 5 dx(t) is summable (C, A).
1k
1 . o0
It follows, on putting =(¢) :J wg(u)du, that j 22| E(v) g pq ()| do

il il
o0

is convergent whenever 5 w=tg(u)du is summable (C, A).
1

Let (a,) be a sequence of positive numbers decreasing to zero with
«, << 1, and let s be the integer such that A <<s << A1. Then there is a
function #(¢) such that ¢®(z) is absolutely continuous in every finite
sub-interval of [1, co),

o) 0 for 1<t<2,
)=

(—1)rea, 1 for ntlm<t<ntl—1/(n4+1) (n=2,3,...),
|p(f)| <! for t =1 and ¢ 1é(f)>0 as i— oo

Let g ?J) ==
Then, for v =1,
1 v
Daa(®) =5 || (0=t g0 &t = $(0).

Now suppose that w > v > 2 and that p, g are the integers such that
p<v<ptl, g<w<g+1l. Then

j"’ -2y} | <

¥

I‘(s,—A) E ('v—t)s—h—l 9b(s-|~1)(,;) dt (’U = 1)_

1dt

q n+1 g+l rnt+l/n
o (—1)7%%5 |2’ j
n=yp n n=p Jn—1/n
p+1 g-+1
+j t—ldt-I—S -1 dt,
» q

* Cf. Sargent [6], Lemma 2.

S
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which tends to zero as w and » tend to infinity, Hence

[ -2g.atar

tends to a finite limit as w-»co. Since w™1g, ,(w)—0 as w—co, it
follows that :

[ g0 =u2ga0+ 04D |20, 0

tends to a finite limit as w—>co.
Further, when A >0, w > 1,

() F: Frlg (1)t — rf =14 Yl (F— )= g (w) du

:fg(’w) du E (1—%} i i=2dp — —)IT r (1—E) Au‘lg(u) du.

i} w
0

Hence, for A >0, j wlg(u)dw is summable (C, A) and consequently
1

f 22| k(v) gy (v) | dv < 0.

Since k(v) is bounded in (1, ©), we now deduce that

o0 n+1 o0 :
z o:nj v k(v)| dv gj =72 k(v) ga,y (v) | dv
% Al : w (ntl/m 2
gz j v—l{k(vﬂdv—l—j 01| k(o) | dv < o.
n=2 Jn—1/n 1

It follows that
o o n+1
j ot | k()| dv= = j 2| k()| dv
i n=1 Jn

is finite, for if not we could make

@ n+1
T S - v k(v)|dy

n=1 n
infinite by putﬁng
e 1/{1—|—r+] v k(v)| dv) '
1 J

This completes the proof of the theorem.

6. The object of this section is to show that Theorem 1 remains valid
if condition (iil) is replaced by

(iii)’ there is an integer n (= A) and a number ¢ (= 1) such that

j | di™ ()] < oo
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Suppose that (iil)' is satisfied and that 5 t 1| k(t)|dt <co. Since
1

w0
g dk™(u) is convergent, there is a number [ such that, for ¢ >¢,
¢

() —1 = —5 dk™(u) = o(1) as {-—>o0.
t

If n =0, we have [ =limk(f); and if n > 1

-0

] =limnt™ Y (t—u) L k() du = lim n! i~ k(z).
1

i—>o0 t—>w0
In either case we deduce from the convergence of 5 £t k(t)| dt that I = 0.
1l

Since the result is now evident if n=A =0, we shall suppose that
n>=1. We have, for { >c, '

r (u—t)" dl™(y) = —n EO d k™ (u) ju (v—t)"1dv

11 i

M r (o—t)"1do r K (u) = n f (v— 1)L k(o)

t

the change in order of integration being justified because of the absolute

convergence of the first integral.
Further,

r 1| dlin=D(t) | = 5 i1 B (E) | di
gj zn—ldtj' | 2™ ()|
¢ t

- % j w| dl™ () | < 0.

The above argument yields, after repetition if necessary,

0 i) = —[" ki =ke) =0
t t

n!

The required result is now a consequence of the proposition:

Theorem 1 remains valid if in condition (iii) A ¢s replaced by p (=A).

That this is a true proposition is evident from the following argument.

Suppose that > A, ¢ =1, and that S u*|dh(w)| <oo. Let

== _(FT+_).‘ (u—tp-rdh(u) (¢ o).

_—
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Then, as in the proof of Theorem 1,

gt) = — Iﬁ f du j: (v—u)*-1dh(v) (& =c).

Consequently,

L | dg(t)| :fﬂg'(t)[dt glﬁ Sc P dt f (v—t)=2-1| dh(v) |

g i o LU
), |0 [ ot < LOE o dh)| <

Further, for ¢ >e¢,

1l 2 1
FAET), M = S Ty

! L A
:-f-(mj dh(?))j (v—u)1 (u—i) du

j (w—t)* duj (v—u)**—1dh(v)

(#1+1 j (w—1) dh(v);

the change in order of integration being justified because of the absolute
convergence of the final integral.
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