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TAUBERIAN THEOREMS FOR STRONG AND
ABSOLUTE BOREL-TYPE METHODS
OF SUMMABILITY®

BY
D. BORWEIN AND E. SMET

1. Imtroduction. Suppose throughout that s, a, (n=0, 1, 2, ...) are arbitrary
complex numbers, that « >0 and 8 is real and that N is a non-negative integer
such that aN+B=1. Let

=Z a, (n=0), 5.1=0,
““+B -1 o zan+ﬂ—1
w0 X gy 0= ] ey
Sep(2)=ae "5, 5(2), Ap(2)=ae "a,5(z)

where z = x +1iy is a complex variable and the power z” is assumed to have its
principal value.

Borel-type methods are defined as follows:

(a) Summability: If S, g(x) exists for all x=0 and tends to s as x = », we
say that s, — s(B, a, B) or Y a, =s(B, a, B);

(b) Strong summability with index p>0: If S, z_,(x) exists for all x=0 and

J e' |Sap-1()—slP dt=o0(e"),
0

we say that s, — s[B, a, B],;

(c) Absolute summability: If s, — s(B, @, 8) and S, s(x)e BV,[0,%),? we
say that s, — s |B, a, B[;

(d) Boundedness: If S,g(x) exists and is bounded on [0,«), we say that
sn =0(1)(B, &, B);

(e) Strong boundedness with index p>0: If S, g_;(x) exists for all x=0 and

J €' [Sap-1(0)F dt =0(e”),
0
we say that s, =0(1)[B, a, 8],.
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@ f(x)e BV,[0, ®) means that f(x) is of bounded variation with respect to x on [0, =).
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The summability method (B, 1, 1) is the Borel exponential method B (see

[7]). The (B, @, B) method is due to Borwein (see [2]) and the [B, @, 8], and
|B, a, B| methods are due to Borwein and Shawyer (see [4], [3] respectively).
Strong Borel-type summability [B, &, B] (see [3]) is the [B, o, BJ; method.

The actual choice of the integer N in the above definitions is clearly
immaterial. We shall therefore tacitly assume whenever a finite number of
methods, with « fixed and 8 = B4, Bz, ... B, are under consideration that N is
such that eN+B, =1 (r=1,2,...,k).

The following known result establishes a natural scale for these summability
methods. (Theorem A(i) is [1, (ID)]. Theorem A(ii) is [3, Theorem 9] when
p=1 and part of [4, Theorem 9*(i)] when p=1. Theorem A(ii) is [8,
Lemma].)

THEOREM A. Let B> p.
(1) I.f Sn 9\‘ S(B5 a, P»), then §p —> S(35 «, ﬁ)

(ii) If p=1 and s, — s[B, o, 1 then s, — s[B, &, Blp.

(iii) If s, — s|B, a, p|, then s, —s |B, &, B

In [5] we established a number of tauberian theorems for the (B, e, B)
method. In this paper we investigate all the corresponding results for the
[B, , B], method with p=1 and either prove them or show, by means of
counterexamples, that they are false. We also examine some of the correspond-
ing results for the |B, &, 8| method.

2. Preliminary results. We first state some known results.

LemMA 1.

() If p=1 and s, — s[B, a, B, then a, — 0[B, a, 81,
(i) If s, — s |B, a, B|, then a.— 0|B, a, B|.

LeMMmA 2.

() If p=1 and s, —> s[B, o, B],, then s, — s(B, a, B).
(ii) If p>0 and s, — s(B, a, B), then s, — s[B, a, B +1],.

Lemma 1() is included in [3, Theorem 15] when p=1 and in [4, Theorem
15*] when p>1. Lemma 1(ii) is included in [3, Theorem 14]. Lemma 2(i) is [3,
Theorem 3] when p=1 while Lemma 2(j) follows from [4, Theorem 3*] and
Theorem A(i) when p>1. Lemma 2(ii) is [4, Theorem 5%].

Wherever it occurs in the following lemmas, we suppose that f(x) is bounded
and Lebesgue measurable on every finite interval [0, X] and we let f5(x) be
defined by

1 x
fs(x)= i’—(gi L (x— )7 f(¢) dt

where 8 >0.
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LemMa 3. If >0 and y>0, then

—L ) a1
fa+~,(x)-1,('y)L(x 1) (1) dt.

LEMMA 4.

() Let f(x)=sa,p(x) and let 8>0. Then sqg-5(x) = fs(x).

(i) Agp(x)=Sup(x) = Supral(x)—ae sy 1(x*¥*7/T(aN +B)).

Lemma 3 is a well-known result the proof of which is straightforward.
Lemma 4(i) is [2, Lemma 2]. The proof of Lemma 4(ii) is also straightforward.

LemMa 5. If s, = 0(1)(B, a, B), then s, =0(1)(B, a, B +8) for every 8>0.
Lemma 5 is [3, Theorem 8].

LemMma 6. Let p=1. If s, =0(1)[B, a, B,, then
(i) s, =0(1)(B, &, B),

(i) s, =0(1)[B, a, B+8], where 0<8<1, and

(iii) s.=0(1)[B, a, B+ 8], where r>0 and §=1.

Proof. (i) When p=1 the result is [3, Theorem 4]. Thus we suppose that
p>1 and we let 1/p+1/q=1. Using Holder’s inequality and Lemma 4(i), we
have that

x

|Sas(x)|= e"‘j e' |Sap-1(1)] dt
0

—x ¥ t Wel la
=e UD e |So,,ﬁ_1(r)|"dt} {J e'dt}
0

Segx{Kex}llp{e:‘C}llq =K1/p

for some positive constant K since s, =0(1)[B, a, B],.

(i) When p=1 the result is included in [3, Theorem 10]. Thus we again
suppose that p>1 and we let 1/p+1/q=1. Furthermore, we let
f(x)=as, g_,(x), L=2°4T(8))", and M =[1/T(8)}*1f5 e"~™" |f;(1)| dt. Then,
using Lemma 4(i), Holder’s inequality, and part of the proof of (i), we have
for x=1 that

Lx e' [Sup+s—1()f dt = {Fé)}p J; gt L (t— )" f(u) du
st e“f’"{ L - |f(u)| du}p dt
wnf e[ ot i )

¥ p/q
X“ (t—u)““du} dt+M

=

p
dt
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=< LJ: e TP KPP gy

L [* t
+_émj. e(l*p)l dtJ‘ (t_u)s—l |f(u)]p du+M
1 t—1
L x u+1
=LEe S J; |fa)lP? duL e P (t—u)’ "t dt + M

L [* 4
=LKe* +5—pL e P |f(u)P du+M

x

x4 L .
=LKe 5o | e |Sa,e—1(u)P du+M
=0(e*) since s,=0(1)[B, a, 8],.

This establishes the desired result.
(iii) If =1, then

J; e' |S,,,,,3+5,1(t)|'drs‘[' K'e'dt=K'e"

for some positive constant K by Lemma 6(i) and Lemma 5.

LemMma 7. If
£ L f(#) dt=0(1),
then
e ‘[: fs(t) dt=0(1)
for every 6 >0.
The proof of Lemma 7 is essentially the same as the proof of [3, Lemma 5].

LemMa 8. Let p=1. If

e L e P f(PP dt=0(1) and e‘*J'x f(t) dt=0(1),
then ’
(@) e*f5 e " |fs ()P dt =0(1) where 0<8<1 and
(ii) e7*fz e |fs(t)| dt=o0(1) where r>0 and 5=1.

Proof. (i) Let £ >0. By hypothesis, there exists a number Y =0 such that

<ge”

J; ) f() dt
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for all x=Y. Let

N(g)= sup

O=x=Y

fo(t) dz‘ <eo,
Now

lim sup e_"L P |f (D dt

X—»c0

x
. _ _ P
=limsup e "J el dt
£

X—>o

1 : 5§—1
F("S_)J; (t—u)*""f(u) du

2° ;
= O {hm sup I, +lim sup Iz} :

where

I =e* : (1-p) e
1=e e dt
[

j (t— )~ f(u) du

and

—-x * {1—p)t 2
L=e e dt
&

J- (t—u)® ' f(u) du
t—e
But, using the Second Mean Value Theorem,

lim sup I, = lim sup e“"j giter dt

X—»o0 X—»00

gt J't_s f(u) du )

(1)

=272 Jim sup e"‘J e"PYN(e) + ge"}P dt

X—»o0 &

=2%g®"VP lim sup e_"‘[ eTPHY(N(e)) + ePe™} dt

x—»x

=2%pg%

since

=2 sup
O=sy=t—e¢

=2{N(e)+ee’}

J““s f(u) du

w(t)

f ¥si) du
and

lim e_"J. e PHN(e) dt =0.

x—rc0

Also, by hypothesis there is a number K =0 such that

e—xj li—pk lf(t)lp dt<=K
0
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for all x=0, and therefore, when p=1,

xX—>c0

) x t
lim sup I, <lim sup e"‘J dt'[ (t=u)®7 |f(w)| du
X—>oo & t—g

U+,

=lim sup e"‘J |f(u)| du.[ (t—u)®tdt
X—»oo 0

— u

£
=K—
8 3

while, when p>1,

£ t
lim sup I, < lim sup e"‘J e“_")’” (t=u)® | f(u)P du}
& T—&

X—>0 xX—»co

t p—1
X{J. (t—u)®™ du} dt
t—e
Sl
5

lim sup e"‘J giP dtJ‘ (t—u)’ 7" |f(w|P du
& t—&

X—>00

e Ny

38 p—1 x u+te
= [—6— lim sup e“"J [f(w)|? du J- (t—u)® e P gr
x—>m 0 u
88 P . _ x . Ea P
s{— lim sup e "J’ TP | f)F du = K{=—1 .
é P o 8
Thus for p=1 we have that

Q¥ +K5)

lim sup e"‘L (O dt< Tor °

X—>oe

from which it follows that

lim sup e"‘J e L@ dt=0
(]

X—>c0

since ¢ is arbitrary. This establishes the desired result.
(ii) Since e™*f1(x) = 0(1) by hypothesis, we have, when 6 =1+ u where >0,
that
¢ fru(x)=e™ ,[ fiu(t) dt=0(1),
0

using Lemma 3 and Lemma 7. Hence, for 6=1,
—x ¥ (1=r)t r — X . £ 5 r
e J; e s dt=e I e’ le”'fs (1) dt
0

= e_’Lx e'o(1) dt
=o0(1).
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If b is a real number, we let
H,={z|Rez=b}.

A function g(z) is said to be of exponential type in Hj, if g(z) is analytic in Hj
and if there are positive numbers A, a such that |g(z)|= Ae® for all z in H,.

Lemma 9. If g(z) is of exponential type in Ho and if

J; lglx)fdx<w  (p>0),
then
L |g'(x)[F dx <.

Lemma 9 is due to Gaier [6, Theorem 2].
Lemma 10. If g(z) is of exponential type in H, and g(x)€ BV,[b, =), then
g“(x) e BV,[b, )
for every non-negative integer k.

Proof. Suppose that g*)(x)e BV,[b,®) where k is a non-negative integer.
Then

J l[g* P(x+b+1)| dx <o
0

and

+1)! [
|g(k+1)(z +h+ I)IS%L |g(z+b+gie)| do

S(k'l‘l)! Aea(|z|+|b!+1)

for all z in H, where A, a are positive constants. Hence, by Lemma 9,

ce

L lg** P (x+b+1)| dx =J |g**?(x)| dx <o

b+1

ie. g**V(x)e BV,[b+1, ). Since g**V(x) € BV,[b, b+ 1], therefore g**P(x) e
BV, [b, «). The desired result now follows by induction.

3. Tauberian theorems for strong Borel-type summability with index p=1.
We first show that the scale in Theorem A(ii) us proper. In [5] we showed
that there is a sequence {s,} which tends to a limit (B, o, 8) but does not tend
to a limit (B, &, B —1). Hence, in view of Lemma 2, there is a sequence {s,}
which tends to a limit [B, a, B+ 1], for every p >0 but does not tend to a limit
[B,a, B—1], for any p=1.
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THeorEM 1. Let p,r=1. If s, — s[B, a, u], and a, — 0[B, a, Bl then s, —
s[B, a, 8]

Proof. By Lemma 2(i), s, — s(B, a, u). The result now follows by [9,
Theorem 3] and the note following [9, Theorem 3].

THEOREM 2. Let p=1. If 5,—s[B, o, B+, for some ¢>0 and s,=
0(1)[B, a, B],, then s, — s[B, a, B+ 8], for every §>0.

Proof. We can suppose without loss of generality that s=0. Then
$» = 0(B, &, B+ ¢) and s, = 0(1)(B, a, B) by Lemma 2(i) and Lemma 6(i). Hence
s» — 0(B, @, B+ 8) by [5, Theorem 2] for §>0. Also s, = 0(1)[B, «, B +38], by
Lemma 6(ii) or (iii). Therefore, letting f(x) = as, g+5_1(x), we have that

eﬁx‘[: f()dt=S, p45(x)=0(1)
and

e—xr e ()P di = e-xr " |Swp+ar (DI dt =0(1)

using Lemma 4(i), and consequently,
e"‘J e’ |Supr2s—1(D]F dt = e"J. e |y (D) dt = 0(1)
0 0

using Lemma 4(i) and Lemma 8, i.e. s, — 0[B, a, B +28],. This establishes the
desired result.

Tueorem 2*. Let p=1. If ¥5a,=s[B, a,B+el], for some €>0 and
a, =0(1)[B, a, B, then Y5 a, =s[B, a, B + 8], for every §>0.

Proof. By Lemma 1(i), a, — 0[B, a, B+ €], and thus, by Theorem 2, g, —
O[B, a, B+ 8], for every §>0. The result now follows by Theorem 1.

A real-valued function g(x), with domain [0, «), is slowly decreasing if for
every £>0 there exist positive numbers X, § such that g(x)—g(y)>—¢
whenever x=y=X and x—y=4§. The following result is [5, Theorem 3]:
If s,—s(B,a, B+e) for some ¢>0 and Sae(x) is slowly decreasing, then
s,—>8(B, a, B). We now show that there is no analogue to this result for the
[B, @, 8], method.

Let {s,} be the sequence defined by ¥=_, s, (x"/n!)=e" sin e (ct. [7,
p. 183]). Then S, ;(x) =sin ¢* where we choose N =0. Thus, using Lemma 4(i),

x

S12(x)= e_xj e'sin e’ dt=e *(cos 1—cos e*) = 0(1)
0

1977] TAUBERIAN THEOREMS 169

and therefore s, — 0(B, 1, 2). (In fact, by [5, Theorem 2], s, — 0(B, 1, 1 +38)
for every 6>0.) Hence, by Lemma 2(ii), s,— 0[B, 1, 3], for every r>0.
Furthermore,

e"“[j e |S1,1(1)—0[ dt = e_‘J. e’ |sin e'[ dt

0

e I,
=e"‘J. |sin u|’du—>ﬁ
1 ™

as x — o where L(r)= (7 [sin u|" du. Therefore s,-4 0[B, 1, 2],, 5. — 0[B, 1, 3]
and both e *[g e'Sy 1(t) dr and e™*[§ e' [S,,1(¢)| dt are slowly decreasing (since
they both tend to a limit as x — o).

Tueorem 3. Let p=1. If 5, — s[B, a, ], and

(i) sn=~K for all n=0, or

(i) an=~K for all n=0, or
(iii) S.,.(z) is of exponential type in Hy, or
(iv) A, .(z) is of exponential type in Hy, or
) |a.|=K" for all n=0,

where K, 8 are positive constants, then
Sy — S[B’ &, IB]r
for every r>0.

Proof. By Lemma 2(i), s, — s(B, a, ). Hence, by [5, Theorem 5, 5*, 6, 6*,
or 7], s, = s(B, o, B—1). The result now follows by Lemma 2(ii).

4. Tauberian theorems for absolute Borel-type summability. We first show
that the scale in Theorem A(iii) is proper in the sense that for each B there is a
sequence {s,} which is summable |B, &, 8| but is not summable |B, a, B —1].

Choose an integer m such that am > 1 and let P be the smallest integer such
that mP= N. Let

o0
x"esine* = ), bx"
n=Pp
and let

{I‘(an +B)b.  if n=mk,
5, =

0 otherwise.
Then

Sa8(x) = ax ™A 1o %e==" gin e* ™ = o(1)
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and

LAl =alamP+R— 1= 2™ gneé™

— xRl TR e T gin

_ a(am)xamP+am+‘B—Zemxefx“"‘ sin ex“"‘

+ a(am)x*™FremBT2,7% co5 X

so that 7 g(x)=o0(1) and S, g(x)€ L,[0,%) since amP+B-2=aN+B-2=0
by our choice of N. Hence s, — 0|B, a, B|. However

el =F0)— a(am)?x mPr2em B3 a7 X gin

where f(x)e L,[0, ) and therefore Sig(x) & L,[0, ) since am > 1. Thus, since

Sap-1(x) = Sep(x)+ Sha(x)
and

Sls-1(x)= Sk g(x)+ 82 a(x),
we have that

s,—0(B,a,8—1) but s,-40|B,a, B—1|.

TueoreMm 4. If s, — s |B, @, | and a, — 0|B, a, B, then s, — s |B, a, B|.

Proof. By [5, Theorem 1], 5, — s(B, @, B). Thus it remains only to show that
S.p(x)e BV,[0,). Let k be a positive integer. Then, in view of Theorem
A(iii), Agpsx-1e(x)€ BV,[0, ). Moreover, by Lemma 4(i1),

aN+B—1

Sap +(k—1)¢z(x) =A.p +(k—1)rx(x) b Sn:,ﬂ+ktx(x) +ae Sn-1 m .

Therefore Sy g+ u—1a(X)€ BVi[0,®) if S, pra(x) € BV,[0, ). Since, in view of
Theorem Al(iii), Sap+kalx)€BV,[0, ) when B+ ka = u, it readily follows that
S.6(x)€ BV,[0, x).

If {s.} is the sequence described in the paragraph preceding Theorem 3,
then, using Lemma 4(i),

x

S1a(x)= e_xI (cos 1—cos e) dt

]

and thus it is readily seen that s, — 0B, 1, 3| and 5,50 |B, 1, 2|. Hence there
is also no immediate absolute summability analogue to [5, Theorem 3].
Our final results are extensions of a result due to Gaier (see [6]).

Tueorem 5. If s, —> s |B, a, u| and S, (z) is of exponential type in Hs for
some 8>0, then s, — s |B, a, B|.
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Proof. Let k be a positive integer such that u —k = B. By [5, Theorem 6] we
have that s, — s(B, a, u — k). Furthermore, since

sm,p—l(z) = S&,p-(z) *+ SS,L.(Z):

it is readily seen that

Su(2)=Sau @)+ Y, (;‘)sg;(z).

Since S,,.(z) is of exponential type in H; and since S, ,.(x)e BV,[0,®) by
hypothesis, we have, by Lemma 10, that S, (x)e BV,[§,%) for j=1,..., k;
also, since we choose N so that aN+p—k=1, we have that
SP (x)e BV,[0, 8]forj=1,..., k.Therefore, &, (x) e BV,[0,®)forj=1,..., k
and, consequently, S, ,_.(x)e BV,[0,). Hence s,—s|B, @, p—k| and, by
Theorem A(iii), s, — s |B, «, B|.

THEOREM 5*. If 5, — 5 |B, @, p| and A, ,.(z) is of exponential type in H; for
some 8>0, then s, — s |B, a, B|.

Proof. By Lemma 1(i), a,—0|B,a, #| and thus, by Theorem 3,
a,— 0 |B, a, B|. The result now follows by Theorem 4.

THEOREM 6. If 5, — s|B,a, u| and |a,|=K" for all n=0 where K is a
positive constant, then s, — s |B, a, B.

Proof. Since |a,|= K" for all n=0, we have that
|Aﬂ,“(Z)|5AeKwJZI

for some positive constant A. The desired result now follows by Theorem 5.
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