TAUBERIAN THEOREMS FOR STRONG AND ABSOLUTE BOREL-TYPE METHODS OF SUMMABILITY(1)

D. BORWEIN AND E. SMET

1. **Introduction.** Suppose throughout that s, a_n (n = 0, 1, 2, ...) are arbitrary complex numbers, that $\alpha > 0$ and β is real and that N is a non-negative integer such that $\alpha N + \beta \ge 1$. Let

$$\begin{split} s_n &= \sum_{\nu=0}^n a_\nu \ (n \ge 0), & s_{-1} = 0, \\ s_{\alpha,\beta}(z) &= \sum_{n=N}^\infty s_n \frac{z^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)}, & a_{\alpha,\beta}(z) &= \sum_{n=N}^\infty a_n \frac{z^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)}, \\ S_{\alpha,\beta}(z) &= \alpha e^{-z} s_{\alpha,\beta}(z), & A_{\alpha,\beta}(z) &= \alpha e^{-z} a_{\alpha,\beta}(z) \end{split}$$

where z = x + iy is a complex variable and the power z^{γ} is assumed to have its principal value.

Borel-type methods are defined as follows:

- (a) Summability: If $S_{\alpha,\beta}(x)$ exists for all $x \ge 0$ and tends to s as $x \to \infty$, we say that $s_n \to s(B, \alpha, \beta)$ or $\sum_{n=0}^{\infty} a_n = s(B, \alpha, \beta)$;
 - (b) Strong summability with index p > 0: If $S_{\alpha,\beta-1}(x)$ exists for all $x \ge 0$ and

$$\int_0^x e^t |S_{\alpha,\beta-1}(t) - s|^p dt = o(e^x),$$

we say that $s_n \to s[B, \alpha, \beta]_p$;

- (c) Absolute summability: If $s_n \to s(B, \alpha, \beta)$ and $S_{\alpha,\beta}(x) \in BV_x[0, \infty)$, we say that $s_n \to s \mid B, \alpha, \beta \mid$;
- (d) Boundedness: If $S_{\alpha,\beta}(x)$ exists and is bounded on $[0,\infty)$, we say that $s_n = O(1)(B,\alpha,\beta)$;
 - (e) Strong boundedness with index p > 0: If $S_{\alpha,\beta-1}(x)$ exists for all $x \ge 0$ and

$$\int_0^x e^t |S_{\alpha,\beta-1}(t)|^p dt = O(e^x),$$

we say that $s_n = 0(1)[B, \alpha, \beta]_p$.

Received by the editors January 13, 1976.

⁽¹⁾ This research has been supported by Grant A2983 of the National Research Council of Canada.

 $^{^{(2)}} f(x) \in BV_x[0,\infty)$ means that f(x) is of bounded variation with respect to x on $[0,\infty)$.

The summability method (B, 1, 1) is the Borel exponential method B (see [7]). The (B, α, β) method is due to Borwein (see [2]) and the $[B, \alpha, \beta]_p$ and $[B, \alpha, \beta]$ methods are due to Borwein and Shawyer (see [4], [3] respectively). Strong Borel-type summability $[B, \alpha, \beta]$ (see [3]) is the $[B, \alpha, \beta]_1$ method.

The actual choice of the integer N in the above definitions is clearly immaterial. We shall therefore tacitly assume whenever a finite number of methods, with α fixed and $\beta = \beta_1, \beta_2, \ldots, \beta_k$, are under consideration that N is such that $\alpha N + \beta_r \ge 1$ $(r = 1, 2, \ldots, k)$.

The following known result establishes a natural scale for these summability methods. (Theorem A(i) is [1, (II)]. Theorem A(ii) is [3, Theorem 9] when p=1 and part of [4, Theorem 9*(ii)] when $p \ge 1$. Theorem A(iii) is [8, Lemma].)

THEOREM A. Let $\beta > \mu$.

- (i) If $s_n \to |s(B, \alpha, \mu)$, then $s_n \to s(B, \alpha, \beta)$.
- (ii) If $p \ge 1$ and $s_n \to s[B, \alpha, \mu]_p$, then $s_n \to s[B, \alpha, \beta]_p$.
- (iii) If $s_n \to s | B, \alpha, \mu |$, then $s_n \to s | B, \alpha, \beta |$.

In [5] we established a number of tauberian theorems for the (B, α, β) method. In this paper we investigate all the corresponding results for the $[B, \alpha, \beta]_p$ method with $p \ge 1$ and either prove them or show, by means of counterexamples, that they are false. We also examine some of the corresponding results for the $|B, \alpha, \beta|$ method.

2. Preliminary results. We first state some known results.

LEMMA 1.

- (i) If $p \ge 1$ and $s_n \to s[B, \alpha, \beta]_p$, then $a_n \to 0[B, \alpha, \beta]_p$.
- (ii) If $s_n \to s | B, \alpha, \beta |$, then $a_n \to 0 | B, \alpha, \beta |$.

LEMMA 2.

- (i) If $p \ge 1$ and $s_n \to s[B, \alpha, \beta]_p$, then $s_n \to s(B, \alpha, \beta)$.
- (ii) If p > 0 and $s_n \to s(B, \alpha, \beta)$, then $s_n \to s[B, \alpha, \beta + 1]_p$.

Lemma 1(i) is included in [3, Theorem 15] when p = 1 and in [4, Theorem 15*] when p > 1. Lemma 1(ii) is included in [3, Theorem 14]. Lemma 2(i) is [3, Theorem 3] when p = 1 while Lemma 2(i) follows from [4, Theorem 3*] and Theorem A(i) when p > 1. Lemma 2(ii) is [4, Theorem 5*].

Wherever it occurs in the following lemmas, we suppose that f(x) is bounded and Lebesgue measurable on every finite interval [0, X] and we let $f_{\delta}(x)$ be defined by

$$f_{\delta}(x) = \frac{1}{\Gamma(\delta)} \int_0^x (x - t)^{\delta - 1} f(t) dt$$

where $\delta > 0$.

LEMMA 3. If $\delta > 0$ and $\gamma > 0$, then

$$f_{\delta+\gamma}(x) = \frac{1}{\Gamma(\gamma)} \int_0^x (x-t)^{\gamma-1} f_{\delta}(t) dt.$$

LEMMA 4.

1977]

- (i) Let $f(x) = s_{\alpha,\beta}(x)$ and let $\delta > 0$. Then $s_{\alpha,\beta+\delta}(x) = f_{\delta}(x)$.
- (ii) $A_{\alpha,\beta}(x) = S_{\alpha,\beta}(x) S_{\alpha,\beta+\alpha}(x) \alpha e^{-x} S_{N-1}(x^{\alpha N+\beta-1}/\Gamma(\alpha N+\beta)).$

Lemma 3 is a well-known result the proof of which is straightforward. Lemma 4(i) is [2, Lemma 2]. The proof of Lemma 4(ii) is also straightforward.

LEMMA 5. If $s_n = 0(1)(B, \alpha, \beta)$, then $s_n = 0(1)(B, \alpha, \beta + \delta)$ for every $\delta > 0$.

Lemma 5 is [3, Theorem 8].

LEMMA 6. Let $p \ge 1$. If $s_n = 0(1)[B, \alpha, \beta]_p$, then

- (i) $s_n = 0(1)(B, \alpha, \beta)$,
- (ii) $s_n = 0(1)[B, \alpha, \beta + \delta]_p$ where $0 < \delta < 1$, and
- (iii) $s_n = 0(1)[B, \alpha, \beta + \delta]_r$ where r > 0 and $\delta \ge 1$.

Proof. (i) When p=1 the result is [3, Theorem 4]. Thus we suppose that p>1 and we let 1/p+1/q=1. Using Hölder's inequality and Lemma 4(i), we have that

$$|S_{\alpha,\beta}(x)| \le e^{-x} \int_0^x e^t |S_{\alpha,\beta-1}(t)| dt$$

$$\le e^{-x} \left\{ \int_0^x e^t |S_{\alpha,\beta-1}(t)|^p dt \right\}^{1/p} \left\{ \int_0^x e^t dt \right\}^{1/q}$$

$$\le e^{-x} \{ Ke^x \}^{1/p} \{ e^x \}^{1/q} = K^{1/p}$$

for some positive constant K since $s_n = 0(1)[B, \alpha, \beta]_p$.

(ii) When p=1 the result is included in [3, Theorem 10]. Thus we again suppose that p>1 and we let 1/p+1/q=1. Furthermore, we let $f(x)=\alpha s_{\alpha,\beta-1}(x)$, $L=2^p/\{\Gamma(\delta)\}^p$, and $M=[1/\{\Gamma(\delta)\}^p]\int_0^1 e^{(1-p)t}|f_{\delta}(t)|^p dt$. Then, using Lemma 4(i), Hölder's inequality, and part of the proof of (i), we have for $x \ge 1$ that

$$\int_{0}^{x} e^{t} |S_{\alpha,\beta+\delta-1}(t)|^{p} dt = \frac{1}{\{\Gamma(\delta)\}^{p}} \int_{0}^{x} e^{(1-p)t} \left| \int_{0}^{t} (t-u)^{\delta-1} f(u) du \right|^{p} dt$$

$$\leq L \int_{1}^{x} e^{(1-p)t} \left\{ \int_{0}^{t-1} |f(u)| du \right\}^{p} dt$$

$$+ L \int_{1}^{x} e^{(1-p)t} \left\{ \int_{t-1}^{t} (t-u)^{\delta-1} |f(u)|^{p} du \right\}$$

$$\times \left\{ \int_{t-1}^{t} (t-u)^{\delta-1} du \right\}^{p/q} dt + M$$

for all $x \ge Y$. Let

$$N(\varepsilon) = \sup_{0 \le x \le Y} \left| \int_0^x f(t) \ dt \right| < \infty.$$

Now

1977]

$$\limsup_{x \to \infty} e^{-x} \int_0^x e^{(1-p)t} |f_{\delta}(t)|^p dt$$

$$= \limsup_{x \to \infty} e^{-x} \int_{\varepsilon}^x e^{(1-p)t} \left| \frac{1}{\Gamma(\delta)} \int_0^t (t-u)^{\delta-1} f(u) du \right|^p dt$$

$$\leq \frac{2^p}{\{\Gamma(\delta)\}^p} \left\{ \limsup_{x \to \infty} I_1 + \limsup_{x \to \infty} I_2 \right\}.$$

where

$$I_1 = e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \left| \int_{0}^{t-\varepsilon} (t-u)^{\delta-1} f(u) \ du \right|^{p} dt$$

and

$$I_2 = e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \left| \int_{t-\varepsilon}^{t} (t-u)^{\delta-1} f(u) \ du \right|^{p} dt$$

But, using the Second Mean Value Theorem,

$$\lim_{x \to \infty} \sup I_1 = \lim_{x \to \infty} \sup e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \left| \varepsilon^{\delta - 1} \int_{\mu(t)}^{t-\varepsilon} f(u) du \right|^p dt$$

$$\leq 2^p \varepsilon^{(\delta - 1)p} \lim_{x \to \infty} \sup e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \{ N(\varepsilon) + \varepsilon e^t \}^p dt$$

$$\leq 2^{2p} \varepsilon^{(\delta - 1)p} \lim_{x \to \infty} \sup e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \{ (N(\varepsilon))^p + \varepsilon^p e^{pt} \} dt$$

$$= 2^{2p} \varepsilon^{\delta p}$$

since

$$\left| \int_{\mu(t)}^{t-\varepsilon} f(u) \ du \right| \le 2 \sup_{0 \le y \le t-\varepsilon} \left| \int_{0}^{y} f(u) \ du \right| \le 2 \{ N(\varepsilon) + \varepsilon e^{t} \}$$

and

$$\lim_{x\to\infty} e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \{N(\varepsilon)\}^{p} dt = 0.$$

Also, by hypothesis there is a number $K \ge 0$ such that

$$e^{-x} \int_0^x e^{(1-p)t} |f(t)|^p dt \le K$$

 $\leq L \int_{0}^{x} e^{(1-p)t} \{K^{1/p}e^{t}\}^{p} dt$ $+ \frac{L}{\delta^{p/q}} \int_{1}^{x} e^{(1-p)t} dt \int_{t-1}^{t} (t-u)^{\delta-1} |f(u)|^{p} du + M$ $\leq LKe^{x} + \frac{L}{\delta^{p-1}} \int_{0}^{x} |f(u)|^{p} du \int_{u}^{u+1} e^{(1-p)t} (t-u)^{\delta-1} dt + M$ $\leq LKe^{x} + \frac{L}{\delta^{p}} \int_{0}^{x} e^{(1-p)u} |f(u)|^{p} du + M$ $= LKe^{x} + \frac{L}{\delta^{p}} \int_{0}^{x} e^{u} |S_{\alpha,\beta-1}(u)|^{p} du + M$ $= 0(e^{x}) \quad \text{since} \quad s_{n} = 0(1)[B, \alpha, \beta]_{p}.$

This establishes the desired result.

(iii) If $\delta \ge 1$, then

$$\int_0^x e^t \left| S_{\alpha,\beta+\delta-1}(t) \right|^r dt \le \int_0^x K^r e^t dt \le K^r e^x$$

for some positive constant K by Lemma 6(i) and Lemma 5.

LEMMA 7. If

$$e^{-x}\int_0^x f(t) dt = o(1),$$

then

$$e^{-x}\int_0^x f_{\delta}(t) dt = o(1)$$

for every $\delta > 0$.

The proof of Lemma 7 is essentially the same as the proof of [3, Lemma 5].

LEMMA 8. Let $p \ge 1$. If

$$e^{-x} \int_0^x e^{(1-p)t} |f(t)|^p dt = 0$$
 (1) and $e^{-x} \int_0^x f(t) dt = o$ (1),

then

(i)
$$e^{-x} \int_0^x e^{(1-p)t} |f_{\delta}(t)|^p dt = o(1)$$
 where $0 < \delta < 1$ and

(ii)
$$e^{-x} \int_0^x e^{(1-r)t} |f_{\delta}(t)|^r dt = o(1)$$
 where $r > 0$ and $\delta \ge 1$.

Proof. (i) Let $\varepsilon > 0$. By hypothesis, there exists a number $Y \ge 0$ such that

$$\left| \int_0^x f(t) \ dt \right| \le \varepsilon e^x$$

for all $x \ge 0$, and therefore, when p = 1,

$$\limsup_{x \to \infty} I_2 \leq \limsup_{x \to \infty} e^{-x} \int_{\varepsilon}^{x} dt \int_{t-\varepsilon}^{t} (t-u)^{\delta-1} |f(u)| du$$

$$\leq \limsup_{x \to \infty} e^{-x} \int_{0}^{x} |f(u)| du \int_{u}^{u+\varepsilon} (t-u)^{\delta-1} dt$$

$$\leq K \frac{\varepsilon^{\delta}}{\delta},$$

while, when p > 1,

$$\limsup_{x \to \infty} I_{2} \leq \limsup_{x \to \infty} e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} \left\{ \int_{t-\varepsilon}^{t} (t-u)^{\delta-1} |f(u)|^{p} du \right\} \\
\times \left\{ \int_{t-\varepsilon}^{t} (t-u)^{\delta-1} du \right\}^{p-1} dt \\
= \left\{ \frac{\varepsilon^{\delta}}{\delta} \right\}^{p-1} \limsup_{x \to \infty} e^{-x} \int_{\varepsilon}^{x} e^{(1-p)t} dt \int_{t-\varepsilon}^{t} (t-u)^{\delta-1} |f(u)|^{p} du \\
\leq \left\{ \frac{\varepsilon^{\delta}}{\delta} \right\}^{p-1} \limsup_{x \to \infty} e^{-x} \int_{0}^{x} |f(u)|^{p} du \int_{u}^{u+\varepsilon} (t-u)^{\delta-1} e^{(1-p)t} dt \\
\leq \left\{ \frac{\varepsilon^{\delta}}{\delta} \right\}^{p} \limsup_{x \to \infty} e^{-x} \int_{0}^{x} e^{(1-p)u} |f(u)|^{p} du \leq K \left\{ \frac{\varepsilon^{\delta}}{\delta} \right\}^{p}.$$

Thus for $p \ge 1$ we have that

$$\limsup_{x\to\infty} e^{-x} \int_0^x e^{(1-p)t} |f_{\delta}(t)|^p dt \le \frac{2^p (2^{2p} + K\delta^{-p})}{\{\Gamma(\delta)\}^p} \varepsilon^{\delta p}$$

from which it follows that

$$\lim_{x \to \infty} \sup e^{-x} \int_0^x e^{(1-p)t} |f_{\delta}(t)|^p dt = 0$$

since ε is arbitrary. This establishes the desired result.

(ii) Since $e^{-x}f_1(x) = o(1)$ by hypothesis, we have, when $\delta = 1 + \mu$ where $\mu > 0$, that

$$e^{-x}f_{1+\mu}(x) = e^{-x}\int_0^x f_{\mu}(t) dt = o(1),$$

using Lemma 3 and Lemma 7. Hence, for $\delta \ge 1$,

$$e^{-x} \int_0^x e^{(1-r)t} |f_{\delta}(t)|^r dt = e^{-x} \int_0^x e^t |e^{-t} f_{\delta}(t)|^r dt$$
$$= e^{-x} \int_0^x e^t o(1) dt$$
$$= o(1).$$

If b is a real number, we let

$$H_b = \{z \mid \text{Re } z \ge b\}.$$

A function g(z) is said to be of exponential type in H_b if g(z) is analytic in H_b and if there are positive numbers A, a such that $|g(z)| \le Ae^{a|z|}$ for all z in H_b .

LEMMA 9. If g(z) is of exponential type in H_0 and if

$$\int_0^\infty |g(x)|^p dx < \infty \qquad (p > 0),$$

then

1977]

$$\int_0^\infty |g'(x)|^p dx < \infty.$$

Lemma 9 is due to Gaier [6, Theorem 2].

LEMMA 10. If g(z) is of exponential type in H_b and $g(x) \in BV_x[b, \infty)$, then

$$g^{(k)}(x) \in BV_x[b,\infty)$$

for every non-negative integer k.

Proof. Suppose that $g^{(k)}(x) \in BV_x[b, \infty)$ where k is a non-negative integer. Then

$$\int_0^\infty |g^{(k+1)}(x+b+1)| \ dx < \infty$$

and

$$|g^{(k+1)}(z+b+1)| \le \frac{(k+1)!}{2\pi} \int_0^{2\pi} |g(z+b+e^{i\theta})| d\theta$$

$$\le (k+1)! A e^{a(|z|+|b|+1)}$$

for all z in H_0 where A, a are positive constants. Hence, by Lemma 9,

$$\int_0^\infty |g^{(k+2)}(x+b+1)| \ dx = \int_{b+1}^\infty |g^{(k+2)}(x)| \ dx < \infty$$

i.e. $g^{(k+1)}(x) \in BV_x[b+1,\infty)$. Since $g^{(k+1)}(x) \in BV_x[b,b+1]$, therefore $g^{(k+1)}(x) \in BV_x[b,\infty)$. The desired result now follows by induction.

3. Tauberian theorems for strong Borel-type summability with index $p \ge 1$. We first show that the scale in Theorem A(ii) us proper. In [5] we showed that there is a sequence $\{s_n\}$ which tends to a limit (B, α, β) but does not tend to a limit $(B, \alpha, \beta - 1)$. Hence, in view of Lemma 2, there is a sequence $\{s_n\}$ which tends to a limit $[B, \alpha, \beta + 1]_p$ for every p > 0 but does not tend to a limit $[B, \alpha, \beta - 1]_p$ for any $p \ge 1$.

THEOREM 1. Let $p, r \ge 1$. If $s_n \to s[B, \alpha, \mu]_p$ and $a_n \to 0[B, \alpha, \beta]_r$, then $s_n \to s[B, \alpha, \beta]_r$.

Proof. By Lemma 2(i), $s_n \to s(B, \alpha, \mu)$. The result now follows by [9, Theorem 3] and the note following [9, Theorem 3].

THEOREM 2. Let $p \ge 1$. If $s_n \to s[B, \alpha, \beta + \varepsilon]_p$ for some $\varepsilon > 0$ and $s_n = 0(1)[B, \alpha, \beta]_p$, then $s_n \to s[B, \alpha, \beta + \delta]_p$ for every $\delta > 0$.

Proof. We can suppose without loss of generality that s = 0. Then $s_n \to 0(B, \alpha, \beta + \varepsilon)$ and $s_n = 0(1)(B, \alpha, \beta)$ by Lemma 2(i) and Lemma 6(i). Hence $s_n \to 0(B, \alpha, \beta + \delta)$ by [5, Theorem 2] for $\delta > 0$. Also $s_n = 0(1)[B, \alpha, \beta + \delta]_p$ by Lemma 6(ii) or (iii). Therefore, letting $f(x) = \alpha s_{\alpha,\beta+\delta-1}(x)$, we have that

$$e^{-x} \int_0^x f(t) dt = S_{\alpha,\beta+\delta}(x) = o(1)$$

and

$$e^{-x} \int_0^x e^{(1-p)t} |f(t)|^p dt = e^{-x} \int_0^x e^t |S_{\alpha,\beta+\delta-1}(t)|^p dt = 0$$

using Lemma 4(i), and consequently,

$$e^{-x} \int_0^x e^t \left| S_{\alpha,\beta+2\delta-1}(t) \right|^p dt = e^{-x} \int_0^x e^{(1-p)t} \left| f_{\delta}(t) \right|^p dt = o(1)$$

using Lemma 4(i) and Lemma 8, i.e. $s_n \to 0[B, \alpha, \beta + 2\delta]_p$. This establishes the desired result.

THEOREM 2*. Let $p \ge 1$. If $\sum_{0}^{\infty} a_n = s[B, \alpha, \beta + \varepsilon]_p$ for some $\varepsilon > 0$ and $a_n = 0(1)[B, \alpha, \beta]_p$, then $\sum_{0}^{\infty} a_n = s[B, \alpha, \beta + \delta]_p$ for every $\delta > 0$.

Proof. By Lemma 1(i), $a_n \to 0[B, \alpha, \beta + \varepsilon]_p$ and thus, by Theorem 2, $a_n \to 0[B, \alpha, \beta + \delta]_p$ for every $\delta > 0$. The result now follows by Theorem 1.

A real-valued function g(x), with domain $[0, \infty)$, is slowly decreasing if for every $\varepsilon > 0$ there exist positive numbers X, δ such that $g(x) - g(y) > -\varepsilon$ whenever $x \ge y \ge X$ and $x - y \le \delta$. The following result is [5, Theorem 3]: If $s_n \to s(B, \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $S_{\alpha,\beta}(x)$ is slowly decreasing, then $s_n \to s(B, \alpha, \beta)$. We now show that there is no analogue to this result for the $[B, \alpha, \beta]_p$ method.

Let $\{s_n\}$ be the sequence defined by $\sum_{n=0}^{\infty} s_n(x^n/n!) = e^x \sin e^x$ (cf. [7, p. 183]). Then $S_{1,1}(x) = \sin e^x$ where we choose N = 0. Thus, using Lemma 4(i),

$$S_{1,2}(x) = e^{-x} \int_0^x e^t \sin e^t dt = e^{-x} (\cos 1 - \cos e^x) = o(1)$$

and therefore $s_n \to 0(B, 1, 2)$. (In fact, by [5, Theorem 2], $s_n \to 0(B, 1, 1+\delta)$ for every $\delta > 0$.) Hence, by Lemma 2(ii), $s_n \to 0[B, 1, 3]_r$, for every r > 0. Furthermore,

$$e^{-x} \int_0^x e^t |S_{1,1}(t) - 0|^r dt = e^{-x} \int_0^x e^t |\sin e^t|^r dt$$
$$= e^{-x} \int_1^{e^x} |\sin u|^r du \to \frac{L(r)}{\pi}$$

as $x \to \infty$ where $L(r) = \int_0^{\pi} |\sin u|^r du$. Therefore $s_n \to 0[B, 1, 2]_r$, $s_n \to 0[B, 1, 3]_r$ and both $e^{-x} \int_0^x e^t S_{1,1}(t) dt$ and $e^{-x} \int_0^x e^t |S_{1,1}(t)|^r dt$ are slowly decreasing (since they both tend to a limit as $x \to \infty$).

THEOREM 3. Let $p \ge 1$. If $s_n \to s[B, \alpha, \mu]_p$ and

- (i) $s_n \ge -K$ for all $n \ge 0$, or
- (ii) $a_n \ge -K$ for all $n \ge 0$, or
- (iii) $S_{\alpha,\mu}(z)$ is of exponential type in H_{δ} , or
- (iv) $A_{\alpha,\mu}(z)$ is of exponential type in H_{δ} , or
- (v) $|a_n| \leq K^n$ for all $n \geq 0$,

where K, δ are positive constants, then

$$s_n \to s[B, \alpha, \beta]_r$$

for every r > 0.

1977]

Proof. By Lemma 2(i), $s_n \to s(B, \alpha, \mu)$. Hence, by [5, Theorem 5, 5*, 6, 6*, or 7], $s_n \to s(B, \alpha, \beta - 1)$. The result now follows by Lemma 2(ii).

4. Tauberian theorems for absolute Borel-type summability. We first show that the scale in Theorem A(iii) is proper in the sense that for each β there is a sequence $\{s_n\}$ which is summable $|B, \alpha, \beta|$ but is not summable $|B, \alpha, \beta - 1|$.

Choose an integer m such that $\alpha m > 1$ and let P be the smallest integer such that $mP \ge N$. Let

$$x^P e^{-x} \sin e^x = \sum_{n=P}^{\infty} b_n x^n$$

and let

$$s_n = \begin{cases} \Gamma(\alpha n + \beta)b_k & \text{if } n = mk, \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$S_{\alpha,\beta}(x) = \alpha x^{\alpha mP + \beta - 1} e^{-x} e^{-x^{\alpha m}} \sin e^{x^{\alpha m}} = o(1)$$

and

$$S'_{\alpha,\beta}(x) = \alpha (\alpha mP + \beta - 1) x^{\alpha mP + \beta - 2} e^{-x} e^{-x^{\alpha m}} \sin e^{x^{\alpha m}}$$
$$-\alpha x^{\alpha mP + \beta - 1} e^{-x} e^{-x^{\alpha m}} \sin e^{x^{\alpha m}}$$
$$-\alpha (\alpha m) x^{\alpha mP + \alpha m + \beta - 2} e^{-x} e^{-x^{\alpha m}} \sin e^{x^{\alpha m}}$$
$$+\alpha (\alpha m) x^{\alpha mP + \alpha m + \beta - 2} e^{-x} \cos e^{x^{\alpha m}}$$

so that $S'_{\alpha,\beta}(x) = o(1)$ and $S'_{\alpha,\beta}(x) \in L_1[0,\infty)$ since $\alpha mP + \beta - 2 \ge \alpha N + \beta - 2 \ge 0$ by our choice of N. Hence $s_n \to 0 \mid B, \alpha, \beta \mid$. However

$$S''_{\alpha\beta}(x) = f(x) - \alpha(\alpha m)^2 x^{\alpha mP + 2\alpha m + \beta - 3} e^{-x} e^{x^{\alpha m}} \sin e^{x^{\alpha m}}$$

where $f(x) \in L_1[0, \infty)$ and therefore $S_{\alpha,\beta}''(x) \notin L_1[0, \infty)$ since $\alpha m > 1$. Thus, since

$$S_{\alpha,\beta-1}(x) = S_{\alpha,\beta}(x) + S'_{\alpha,\beta}(x)$$

and

$$S'_{\alpha,\beta-1}(x) = S'_{\alpha,\beta}(x) + S''_{\alpha,\beta}(x),$$

we have that

$$s_n \to 0(B, \alpha, \beta - 1)$$
 but $s_n \to 0 | B, \alpha, \beta - 1 |$.

THEOREM 4. If $s_n \to s \mid B, \alpha, \mu \mid$ and $a_n \to 0 \mid B, \alpha, \beta \mid$, then $s_n \to s \mid B, \alpha, \beta \mid$.

Proof. By [5, Theorem 1], $s_n \to s(B, \alpha, \beta)$. Thus it remains only to show that $S_{\alpha,\beta}(x) \in BV_x[0,\infty)$. Let k be a positive integer. Then, in view of Theorem A(iii), $A_{\alpha,\beta+(k-1)\alpha}(x) \in BV_x[0,\infty)$. Moreover, by Lemma 4(ii),

$$S_{\alpha,\beta+(k-1)\alpha}(x) = A_{\alpha,\beta+(k-1)\alpha}(x) + S_{\alpha,\beta+k\alpha}(x) + \alpha e^{-x} s_{N-1} \frac{x^{\alpha N+\beta-1}}{\Gamma(\alpha N+\beta)}.$$

Therefore $S_{\alpha,\beta+(k-1)\alpha}(x) \in BV_x[0,\infty)$ if $S_{\alpha,\beta+k\alpha}(x) \in BV_x[0,\infty)$. Since, in view of Theorem A(iii), $S_{\alpha,\beta+k\alpha}(x) \in BV_x[0,\infty)$ when $\beta+k\alpha \geq \mu$, it readily follows that $S_{\alpha,\beta}(x) \in BV_x[0,\infty)$.

If $\{s_n\}$ is the sequence described in the paragraph preceding Theorem 3, then, using Lemma 4(i),

$$S_{1,3}(x) = e^{-x} \int_0^x (\cos 1 - \cos e^t) dt$$

and thus it is readily seen that $s_n \to 0 | B, 1, 3 |$ and $s_n \to 0 | B, 1, 2 |$. Hence there is also no immediate absolute summability analogue to [5, Theorem 3].

Our final results are extensions of a result due to Gaier (see [6]).

THEOREM 5. If $s_n \to s | B, \alpha, \mu |$ and $S_{\alpha,\mu}(z)$ is of exponential type in H_δ for some $\delta > 0$, then $s_n \to s | B, \alpha, \beta |$.

Proof. Let k be a positive integer such that $\mu - k \le \beta$. By [5, Theorem 6] we have that $s_n \to s(B, \alpha, \mu - k)$. Furthermore, since

$$S_{\alpha,\mu-1}(z) = S_{\alpha,\mu}(z) + S_{\alpha,\mu}^{(1)}(z),$$

it is readily seen that

1977]

$$S_{\alpha,\mu-k}(z) = S_{\alpha,\mu}(z) + \sum_{j=1}^{k} {k \choose j} S_{\alpha,\mu}^{(j)}(z).$$

Since $S_{\alpha,\mu}(z)$ is of exponential type in H_{δ} and since $S_{\alpha,\mu}(x) \in BV_x[0,\infty)$ by hypothesis, we have, by Lemma 10, that $S_{\alpha,\mu}^{(j)}(x) \in BV_x[\delta,\infty)$ for $j=1,\ldots,k$; also, since we choose N so that $\alpha N + \mu - k \ge 1$, we have that $S_{\alpha,\mu}^{(j)}(x) \in BV_x[0,\delta]$ for $j=1,\ldots,k$. Therefore, $S_{\alpha,\mu}^{(j)}(x) \in BV_x[0,\infty)$ for $j=1,\ldots,k$ and, consequently, $S_{\alpha,\mu-k}(x) \in BV_x[0,\infty)$. Hence $s_n \to s \mid B, \alpha, \mu-k \mid$ and, by Theorem A(iii), $s_n \to s \mid B, \alpha, \beta \mid$.

THEOREM 5*. If $s_n \to s | B, \alpha, \mu |$ and $A_{\alpha,\mu}(z)$ is of exponential type in H_δ for some $\delta > 0$, then $s_n \to s | B, \alpha, \beta |$.

Proof. By Lemma 1(ii), $a_n \to 0 | B, \alpha, \mu |$ and thus, by Theorem 5, $a_n \to 0 | B, \alpha, \beta |$. The result now follows by Theorem 4.

THEOREM 6. If $s_n \to s \mid B, \alpha, \mu \mid$ and $|a_n| \le K^n$ for all $n \ge 0$ where K is a positive constant, then $s_n \to s \mid B, \alpha, \beta \mid$.

Proof. Since $|a_n| \le K^n$ for all $n \ge 0$, we have that

$$|A_{\alpha,\mu}(z)| \leq A e^{K^{1/\alpha}|z|}$$

for some positive constant A. The desired result now follows by Theorem 5*.

REFERENCES

- 1. D. Borwein, On methods of summability based on integral functions II. Proc. Camb. Phil. Soc., 56 (1960), 125-131.
- 2. D. Borwein, Relations between Borel-type methods of summability, Journal London Math. Soc., 35 (1960), 65-70.
- 3. D. Borwein and B. L. R. Shawyer, On Borel-type methods, Tôhoku Math. Journ., 18 (1966), 283-298.
- 4. D. Borwein and B. L. R. Shawyer, On Borel-type methods II, Tôhoku Math. Journ., 19 (1967), 232-237.
- 5. D. Borwein and E. Smet, Tauberian theorems for Borel-type methods of summability, Canad. Math. Bull., 17 (1974), 167-173.
- 6. D. Gaier, Über die Äquivalenz der B. Verfahren, Math. Z., 64 (1956), 183-191.
- 7. G. H. Hardy, Divergent Series, Oxford (1949).
- 8. B. L. R. Shawyer, On the relations between the Abel and Borel-type methods of summability, Proc. Amer. Math. Soc., 22 (1969), 15-19.

9. B. L. R. Shawyer, Some relations between strong and ordinary Borel-type methods of summability, Math. Z., 109 (1969), 115-120.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA N6A 5B9