ADDENDUM TO "TAUBERIAN THEOREMS FOR BOREL-TYPE METHODS OF SUMMABILITY"

BY

D. BORWEIN AND E. SMET

We will use the notation and definitions given in [2, p. 167 and p. 173]. In addition, we say that $s_n = 0(1)(B', \alpha, \beta)$ if $A_{\alpha,\beta}(x)$ exists for all $x \ge 0$ and $\alpha^{-1} \int_0^x A_{\alpha,\beta}(t) dt$ is bounded on $[0,\infty)$. We will also use the notations " $s_n \to s(B', \alpha, \beta)$ " and " $\sum_{n=0}^{\infty} a_n = s(B', \alpha, \beta)$ " interchangeably.

We need the following lemma, the proof of which is readily obtained by use of [2, Lemma 1(i)].

LEMMA 1. Let

$$F_{\alpha,\beta}(x) = \alpha^{-1} \int_0^x A_{\alpha,\beta}(t) dt$$

exist for all $x \ge 0$. Then

$$F_{\alpha,\beta+\delta}(x) = \int_0^x h(x-t)F_{\alpha,\beta}(t) dt$$

where $\delta > 0$ and $h(u) = u^{\delta-1}e^{-u}/\Gamma(\delta)$.

The following result is due to Borwein [1, Theorem 2].

THEOREM A. $s_n \to s(B, \alpha, \beta + 1)$ if and only if $s_n \to s(B', \alpha, \beta)$.

A simplified version of the proof of Theorem A yields the following.

THEOREM B. $s_n = 0(1)(B, \alpha, \beta + 1)$ if and only if $s_n = 0(1)(B', \alpha, \beta)$.

It is now immediate, in view of Theorems A and B, that the following theorems are equivalent to the corresponding theorems in [2] with $\beta+1$ and $\mu+1$ in place of β and μ .

THEOREM 1. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \mu)$ and $a_n \to 0$ (B', α, β) , then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta)$.

THEOREM 2. If $s_n \to s(B', \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $s_n = 0(1)(B', \alpha, \beta)$, then $s_n \to s(B', \alpha, \beta + \delta)$ for any $\delta > 0$.

THEOREM 2*. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $a_n = 0(1)(B', \alpha, \beta)$, then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta + \delta)$ for any $\delta > 0$.

THEOREM 3. If $s_n \to s(B', \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $S_{\alpha,\beta+1}(x)$ is slowly decreasing, then $s_n \to s(B', \alpha, \beta)$.

THEOREM 3*. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $A_{\alpha,\beta+1}(x)$ is slowly decreasing, then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta)$.

THEOREM 4. If $s_n = 0(1)(B', \alpha, \mu)$ and $s_n \ge -K$ for all $n \ge 0$ where K is a positive constant, then $s_n = 0(1)(B', \alpha, \beta)$.

THEOREM 5. If $s_n \to s(B', \alpha, \mu)$ and $s_n \ge -K$ for all $n \ge 0$ where K is a positive constant, then $s_n \to s(B', \alpha, \beta)$.

THEOREM 5*. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \mu)$ and $a_n \ge -K$ for all $n \ge 0$ where K is a positive constant, then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta)$.

THEOREM 6. If $s_n \to s(B', \alpha, \mu)$ and if there are positive real numbers A, a, δ such that $|S_{\alpha,\mu+1}(z)| \le A \exp(a|z|)$ whenever $\text{Re } z \ge \delta$, then $s_n \to s(B', \alpha, \beta)$.

THEOREM 6*. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \mu)$ and if there are positive real numbers A, a, δ such that $|A_{\alpha,\mu+1}(z)| \leq A \exp(a|z|)$ whenever $\text{Re } z \geq \delta$, then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta)$.

THEOREM 7. If $\sum_{0}^{\infty} a_n = s(B', \alpha, \mu)$ and $|a_n| \le K^n$ for all $n \ge 0$ where K is a positive constant, then $\sum_{0}^{\infty} a_n = s(B', \alpha, \beta)$.

In addition, we have the following result which is a more appropriate analogue to [2, Theorem 3] than the above Theorem 3.

THEOREM 8. If $s_n \to s(B', \alpha, \beta + \varepsilon)$ for some $\varepsilon > 0$ and $\alpha^{-1} \int_0^x A_{\alpha,\beta}(t) dt$ is slowly decreasing, then $s_n \to s(B', \alpha, \beta)$.

Proof. Let

$$F_{\alpha,\beta}(x) = \alpha^{-1} \int_0^x A_{\alpha,\beta}(t) dt, \qquad F_{\alpha,\beta+\varepsilon}(x) = \alpha^{-1} \int_0^x A_{\alpha,\beta+\varepsilon}(t) dt.$$

In view of Lemma 1 and [2, lemma 3], we have, by [2, Theorem 9] (with $F(x) = F_{\alpha,\beta+\varepsilon}(x)$, $f(x) = F_{\alpha,\beta}(x)$, $h(u) = u^{\varepsilon-1}e^{-u}/\Gamma(\varepsilon)$), that $F_{\alpha,\beta}(x)$ is bounded on $[0,\infty]$. Hence, by Theorem 2, $F_{\alpha,\beta+1}(x) \to s$ as $x \to \infty$. Thus, in view of Lemma 1, it follows by [2, Theorem 8] (with $F(x) = F_{\alpha,\beta+1}(x)$, $f(x) = F_{\alpha,\beta}(x)$), that $F_{\alpha,\beta}(x) \to s$ as $x \to \infty$.

REFERENCES

- 1. D. Borwein, Relations between Borel-type methods of summability, Journal London Math. Soc., 35 (1960), 65-70.
- 2. D. Borwein and E. Smet, Tauberian theorems for Borel-type methods of summability, Canad. Math. Bull., 17 (1974), 167-173.

University of Western Ontario, London, Ontario, Canada.