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ON FUNCTIONAL CESARO AND HOLDER METHODS
OF SUMMABILITY

D. BORWEIN AND B. L. R, SHAWYER

1. Cesaro and Hélder-type methods of summability. Suppose that
f(x) is integrable L in every finite interval [0, X], and that 6§ > 0. Define

£ = (1O [T~ 00, and gte) = 7).

Definition. If T3 + 1)x—%;(x) — ¢ as x — o, then we say that the (C, §)
limit of f(x) is o, and write f(x) — a(C, 8).

Definition. If eg;(x) — ¢ as x — o0, then we say that the (C, §) limit of
f(x) is o, and write f(x) — ¢(C, ).

Note that (C, 3) is the standard Cesaro method of summability, that

e g5 (x) = {I‘(a)}_le_"j;I (x — )" "' (H)dt

= [I‘(B)}‘IX‘ILX (log X /T)*"f (log T)d1,

and that this final integral is the functional Holder transform of f(log 7).

It is well known [4] that f(x) — ¢(C, 6) if and only if f(e*) — o(C, 8). Our
primary objective is to prove that if f(x) = o(C, 8) then fx) > o (C, 5), and
that there is a function whose (C, 8) limit exists but whose (C, 8) limit does not
exist.

We need two lemmas. The first is due to M. Rjesz [3].

LEMMA 1. Forx >t > Qand 0 < § < 1
1 t z
r'(l —5) fn (x — )" Y@)dv = & f fi(@)dv f (o — w)(w — v)" dw.
0 :
LEMMA 2. If0 <3 = 1land e g;(x) — o as x — 00, then

T
5x_5f G~ 2= o dse— o,
0
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Proof. Suppose first that 0 < § < 1. Using the result of Lemma 1, we have
f (x — 1) g(B)dt — T(8)e "gs(x)
0
T ]
=f e"’dtf (e — )" g (u)du
0 0
I R e f! dfx oy Hy — iy
[

_ S I+ — 75ﬁ1d'wfm 0
———_I‘(l—é)fge ga(v)dva (x —w)"( ) .

= f J(x — v)e "gs(v)dv, where
0

I

16) = 5 J, 0= e - e

It now suffices to show that

5x75£}$ Jx —v)¢@)dr — o

whenever ¢(x) is integrable L in every finite interval [0, X] and tends to ¢ as
x — o0, This is true since (see, for example [2, Theorem 6])

N . & _afz — W) — Y
8x Lj(x——w)dﬂ———r(lma)x . (o — u)'u""( e “)du

ﬁﬁ j;m w1l —e™du =1 asx—wo,
and since, for each fixed y > 0,
Bx_'sj;y Jx —v)dv—0 asx— o0,
When § = 1, we have
x f: e 'g()dt — x e g (x) = x_1f: e g1 (t)dt,

and the desired result now follows from the regularity of the (C, 1) method.

We now prove two theorems which show the relation between the methods
(€, &) and (C, @).

THEOREM 1. For @ > 0, if f(x) — o(C, a) then f(x) — o(C, ).
Proof. First suppose that 0 < « < 1. Since
I'(a)f.(x) = j; (x — ) e g (t)dt,

the result follows from Lemma 2.
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Now suppose thate > 1. Seta = £ + 6 where 0 < § < landk = 1,2,....
Integration by parts k times yields

@i = (=0 [ at(2) e — o

x

¥ %
o aﬂ_[; a®e ! — )t + Y arj:] e x — e
=1

T

T k—1
o fo ge(t)e " (x — £)*dt +

=0

+f0 g (e (x — )" dt,

where the a, and b, are constants.

By assumption, e~*g,(x) — ¢ as x — o0, and so since & + 1 = o, it is easy
to show that e~7g; 11(x) — ¢ as ¥ — c0. Thus using Lemma 1 for the term in-
volving a, and the regularity of the Cesiro methods for the other terms, it fol-
lows that I'(e + 1)x~2f,(x) — ¢ as x — 0. This completes the proof of Theo-
rem 1.

THEOREM 2. For a2 > 0, ¢”* — 0(C, «), but the (C, &) limit of e* does not exist.

Proof. By the Riemann-Lebesgue theorem,

z 1
x_“f; (x — 8% = f (1 — %) %™y -0 asx — 00,
0

so that e — 0(C, a). On the other hand,
x z
e_”f (x — 1) Teledt = e”f e 1Dy
0 0

«© iz
iz a—1 —1(141) T (a)
= f ey
e j; e dt 4+ o(1) L 9)° + o(1),
which does not tend to a limit as x — 0 ; that is, the (C, ) limit of ¢* does not
exist,

2. Application to the Borel-type methods of summability. Suppose
that A > 0, that pisrealand that Nisa non-negative integer greater than — u/A.
Let p, s, (n = 0, 1,...) be complex numbers. Define
An+p—1

R
Siale) = ;\r T+ )

Definition [1]. If S\ ,(x) — p as x — o0, then we say that the (B, A, p) limit
of the sequence {s,} is p, and writes s, — p(B, A, u).

The following two theorems are known.

x
> b,j; gera(®)e i (x — 1) gy
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TueorREM 3 [5]. The (C, &) (B, \, p) transform of the sequence {s,} is equal to
the (B, \, u + 8) transform of the sequence {s,}; that is

8_zf (x — t)ﬁ_letsh,“(ﬁ)dt = S)\,u.;.,s(x).

0

From this it follows that 5, — p(C, 8) (B, A, p) if and onlyifs,— p(B, \, u 4+ 8).
THEOREM 4. If 5, — p(B, A, ) then s, — p{C, §) (B, \, n).

This is trivial since (C, 8) is a regular method. See also [6].
The following theorem, which follows immediately from Theorem 3 and the
results of §1, extends Theorem 4.

THEOREM 5. (i) If 5, — p(B, N\, u + 8) then s, — p(C, 8) (B, \, u);
(ii) There is a sequence whose (C,8) (B, N\, u) lmit exists but whose
(B, M\, u + &) limit does not exist.
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