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A Tauberian theorem for Abelian summability
methods

By D. Borwein and B. Watson at London

Let {4,} be a sequence of real numbers satisfying
O0<i<d<d3< 4, — 0.
Let {a,} be a sequence of real numbers, and let

Sy=ay fa; +as+-+aq, for n=1,2,3 ....

The series Y a,is said to be summable to s by the abelian summability method (4, 1)

n=1
o0

if 3. a,e **is convergent for y > 0, and tends to s as y — 0+,

n=1

The purpose of this note is to prove the following general tauberian theorem:

Theorem. If “}T—l-» 1, if 3 a, is summable (4, ) to s, and if lim inf {s, —s, } >0

n n=1

as n=m— oo and;{in—d, then s, — s.

m

The only two special cases of this theorem which appear to be known are ==
and 4, =logn. The case 4,=n is a familiar result for ordinary Abel summability. The case
4,=logn was established by Kwee [2] by a method fundamentally different from, and
more complicated than, ours. Our proof is based on the following known result (see [1],
Theorem 105, p. 164):

Lemma. If o is a function of bounded variation on every interval [0,T]; if

f e du(t)is convergent for y >0 and tends to s as y — 0+ ; and if lim inf {a(y) —a(x)} =0
0
as y>x-— oo and%-—»l; then a(y) — s as y — oo.

Proof of the theorem. Set
()= 2 a,

An<t
o
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Then for y > 0, we have

o0 o0
(e da(t)=3 a,e ¥
0 n=1

and, by hypothesis, the series converges and its sum tends to s as y—0+.

Assign & > 0. Then there exist positive numbers M, & such that 5, — S, > —& whenever

)

A :
nzmz=M and —-<14 2. Choose an integer N such that Ay > Ap+q and, form+1> N,
Am

My il 20
<
Aon 146

Let y=x> Ay and ls 1+4. Then there exist integers n, m such that J,,, >y >4,
X

and A,,, >x>J,. Hence n >m > M and

Ay P dey 1426 N
T BT (148 — " —1425:
lm<x 1 =) 1+6 et

and therefore

Q‘l(y) —GC()C) :Of(j'n+1)_oc(’lm+l)=5nksm> ==&

Consequently, lim inf {&:(y) —a(x)} >0 as y>x — oo and o 1; and so, by the
X

lemma, s, — s.
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