Journal für die reine und angewandte Mathematik

Herausgegeben von Helmut Hasse und Hans Rohrbach

Sonderdruck aus Band 273, Seite 153 bis 164

Verlag Walter de Gruyter · Berlin · New York 1975

A Tauberian theorem for Borel-type methods of summability

By Irvine J. W. Robinson and David Borwein at London, Canada

1. Introduction

Let $\sum_{n=0}^{\infty} a_n$ be a series of complex numbers. Let A_n denote the partial sum

$$a_0 + \cdots + a_n$$

of the series if $n \ge 0$ and let $A_n = 0$ if n < 0. Suppose throughout that $\alpha > 0$, β is real, and N is a non-negative integer such that $\alpha N + \beta > 0$. The series is said to be summable (B, α, β) to A (we write $\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$) if, as $x \to \infty$, $\alpha e^{-x} \sum_{n=0}^{\infty} \frac{A_n x^{an+\beta-1}}{\Gamma(\alpha n + \beta)} \to A$. The actual choice of N is clearly immaterial. The Borel-type summability method (B, α, β) is regular, and (B, 1, 1) is the standard Borel exponential method B.

Our aim in this paper is to prove the following Tauberian theorem.

Theorem 1. If
$$\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$$
 and $a_n = O(n^{-\frac{1}{2}})$ then $\sum_{n=0}^{\infty} a_n = A$.

The case $\alpha = \beta = 1$ of the theorem is known ([4], Theorem 156) as is the corresponding result with "O" replaced by "o".

Borwein [2] has proved:

If $J(z) = \sum_{n=N}^{\infty} \frac{z^n}{h(n)}$ where h(z) is an analytic function of z = x + iy in the region $x > x_0$, such that

- (i) when $x > x_0$ and |z| is large $h(z) = z^{\alpha z + \beta} e^{\gamma z} \left\{ C + O\left(\frac{1}{|z|}\right) \right\}$ where C > 0, $\alpha > 0$, β and γ are real, and
 - (ii) h(x) is real for $x > x_0$,

then

$$\sum_{n=0}^{\infty} a_n = A(J) \qquad i. e., \quad \left(\frac{1}{J(x)} \sum_{n=0}^{\infty} \left(\frac{1}{h(n)}\right) A_n x^n \to A \text{ as } x \to \infty\right)$$

if and only if $\sum_{n=0}^{\infty} a_n = A\left(B, \alpha, \beta + \frac{1}{2}\right)$.

In particular, taking $h(z) = \{\Gamma(ax+b)\}^c (z+p)^{qz+r}$ where b, c, p, q, and r are real, a > 0 and ac + q > 0, so that

$$J(z) = \sum_{n=N}^{\infty} \frac{z^n}{\{\Gamma(an+b)\}^c (n+p)^{qn+r}},$$

then
$$\sum\limits_{n=0}^{\infty}a_{n}=A\left(J\right)$$
 if and only if $\sum\limits_{n=0}^{\infty}a_{n}=A\left(B,\,a\,c+q,\,b\,c+r+rac{1-c}{2}
ight) .$

It follows that Theorem 1 is in fact a Tauberian theorem for quite a wide class of summability methods.

Theorem 1 remains true if $\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$ is replaced by $\sum_{n=0}^{\infty} a_n = A(B', \alpha, \beta)$, by which it is meant that, as $y \to \infty$.

$$\int\limits_{0}^{y}e^{-x}dx\sum_{n=N}^{\infty}\frac{a_{n}x^{an+\beta-1}}{\Gamma(\alpha n+\beta)}\to A-A_{N-1}\;.$$

This is a consequence of the following known result ([1], Theorem 2):

$$\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta + 1) \quad \text{if and only if} \quad \sum_{n=0}^{\infty} a_n = A(B', \alpha, \beta).$$

2. Preliminary results

Lemma 1. Let x > 0, $h = n - \frac{x}{2}$, $\frac{1}{2} < \zeta < \frac{2}{2}$, and $0 < \eta < 2\zeta - 1$. Then for $n = N, N + 1, \ldots$

(2. 1)
$$e^{-x} \sum_{|h| > x^{\zeta}} \frac{x^{an+\beta-1}}{\Gamma(\alpha n + \beta)} = O(e^{-x^{\eta}})$$

$$(2.2) e^{-x} \frac{x^{an+\beta-1}}{\Gamma(\alpha n + \beta)} = \frac{1}{\sqrt{2\pi x}} e^{-\frac{\alpha^2 h^2}{2x}} \left\{ 1 + O\left(\frac{|h| + 1}{x}\right) + O\left(\frac{|h|^3}{x^2}\right) \right\}$$
 if $|h| \leq x^{\xi}$.

Formulae (2.1) and (2.2) also hold with $h = n - \left[\frac{x}{x}\right]$

Proof. Formula (2.1) is Lemma 2, part (d) of Borwein [3], while Borwein would have obtained (2. 2) instead of part (e) of the same lemma if he had not used

$$\frac{|h|+1}{x} = O(x^{3\zeta-2})$$
 and $\frac{|h|^3}{x^2} = O(x^{3\zeta-2})$

in simplifying near the end of his proof.

(We write $O\left(\frac{|h|+1}{r}\right)$ instead of $O\left(\frac{|h|}{r}\right)$ in order to include the case h=0.) Taking $h = n - \left| \frac{x}{\alpha} \right|$ would have necessitated only minor changes in his proof.

Robinson and Borwein, Tauberian theorem for Borel-type methods of summability

Lemma 2.
$$\frac{n^{\frac{1}{2}}}{\Gamma(\alpha n + \beta)} = O\left(\frac{1}{\Gamma(\alpha n + \beta - \frac{1}{2})}\right), \text{ for } n = N, N + 1, \dots$$

Proof. It follows from Stirling's theorem that

$$\Gamma(\alpha n + \beta) = (2\pi)^{\frac{1}{2}} e^{\alpha n} (\alpha n)^{\alpha n + \beta - \frac{1}{2}} \left\{ 1 + O\left(\frac{1}{n}\right) \right\}.$$

Thus $\frac{(\alpha n)^{\frac{1}{2}} \Gamma(\alpha n + \beta - \frac{1}{2})}{\Gamma(\alpha n + \beta)} \rightarrow 1$ and the lemma follows.

Lemma 3. Let $\frac{1}{2} < \zeta < \frac{2}{3}$. If $a_n = o(1)$ and $|h| \leq n^{\xi}$, then

$$A_{n+h} - A_n = o(|h|) \qquad as \quad n \to \infty,$$

uniformly for $|h| \leq n^{\zeta}$.

Proof. The result is a special case of a known result ([4], Theorem 144); it may easily be verified directly.

Lemma 4. Let
$$\frac{1}{2} < \zeta < \frac{2}{3}$$
. If $A_n = o(n^{\frac{1}{2}})$ and $|h| \leq (\alpha n)^{\zeta}$, then

$$A_{n+h} = o(n^{\frac{1}{2}}) \qquad as \ n \to \infty,$$

uniformly for $|h| \leq (\alpha n)^{\zeta}$.

Proof.
$$\frac{|A_{n+h}|}{n^{\frac{1}{2}}} = \left(1 + \frac{h}{n}\right)^{\frac{1}{2}} \frac{|A_{n+h}|}{(n+h)^{\frac{1}{2}}} \le \left(1 + \frac{(\alpha n)^{\zeta}}{n}\right)^{\frac{1}{2}} \frac{|A_{n+h}|}{(n+h)^{\frac{1}{2}}}$$
. Since

$$n+h \ge n-(\alpha n)^{\xi}$$
 and $n-(\alpha n)^{\xi} \to \infty$ as $n \to \infty$,

we have

$$\frac{A_{n+h}}{(n+h)^{\frac{1}{2}}} = o(1) \qquad \text{as } n \to \infty,$$

uniformly for $|h| \leq (\alpha n)^{\zeta}$. Since

$$\left(1+\frac{(\alpha n)^{\zeta}}{n}\right)^{\frac{1}{2}} \to 1$$
 as $n \to \infty$,

the result follows.

Lemma 5. Let
$$\frac{1}{2} < \zeta < \frac{2}{3}$$
. If $A_n = o(n^{\frac{1}{2}})$ and $|h| > (\alpha n)^{\zeta} > 0$, then $A_{n+h} = O(|h|)$.

Proof. It follows from
$$A_n = o(n^{\frac{1}{2}})$$
 that $A_{n+h} = O((n+|h|)^{\frac{1}{2}})$. Note that $\frac{3}{2} < \frac{1}{\zeta} < 2$ and $\frac{3}{4} < \frac{1}{2\zeta} < 1$.

Since $|h| > (\alpha n)^{\zeta}$,

$$|n + |h| = O(|h|^{\frac{1}{\zeta}}) + |h| = O(|h|^{\frac{1}{\zeta}}),$$

so that $(n+|h|)^{\frac{1}{2}}=O(|h|^{\frac{1}{2\zeta}})=O(|h|)$, and the result follows.

Lemma 6. If n is a positive integer and $a_n = O(n^{-\frac{1}{2}})$, then, for $|h| \leq n^{\xi}$,

$$A_{n+h} - A_n = O\left(\frac{\mid h \mid}{\sqrt[]{n}}\right).$$

Proof. This may be readily verified.

The remaining results of this section give estimates of certain sums in terms of integrals. The proofs are elementary. Part of Lemma 8 is proved to give an idea of what is involved. Otherwise the proofs are omitted. Throughout the rest of this section n is a positive integer and c > 0.

Lemma 7.
$$\left| \sum_{h=-\infty}^{\infty} e^{-\frac{ch^2}{n}} - 2 \int_{0}^{\infty} e^{-\frac{ct^2}{n}} dt \right| < 1.$$

Whence

(2.3)
$$\sqrt{\frac{c}{\pi n}} \sum_{h=-\infty}^{\infty} e^{-\frac{ch^2}{n}} = 1 + O(n^{-\frac{1}{2}}),$$

uniformly in any finite interval $0 \le c \le k$ (cf. [4], Theorem 140).

Lemma 8.
$$\sum_{h=-\infty}^{\infty} |h| e^{-\frac{ch^2}{n}} \ge 2 \int_{0}^{\infty} e^{-\frac{ct^2}{n}} t dt - \left(\frac{2n}{ec}\right)^{\frac{1}{2}} = \left(\frac{n}{c}\right) - \left(\frac{2n}{ec}\right)^{\frac{1}{2}}.$$

For n sufficiently large,

$$\sum_{h=-\infty}^{\infty} |h| e^{-\frac{ch^2}{n}} \leq 2 \int_0^{\infty} e^{-\frac{ct^2}{n}} t dt + \left(\frac{2n}{ec}\right)^{\frac{1}{2}} = \left(\frac{n}{c}\right) + \left(\frac{2n}{ec}\right)^{\frac{1}{2}}.$$

Whence

(2.4)
$$\sum_{h=-\infty}^{\infty} |h| e^{-\frac{ch^2}{n}} = O\left(\int_{0}^{\infty} e^{-\frac{ct^2}{n}} t dt\right).$$

Proof. Let $S = \sum_{n=0}^{\infty} h e^{-\frac{ch^2}{n}}$ so that $\sum_{n=0}^{\infty} |h| e^{-\frac{ch^2}{n}} = 2S$. Let $f(t) = t e^{-\frac{ct^2}{n}}$. Then

$$f'(t) = e^{-\frac{ct^2}{n}} \left(1 - \frac{2ct^2}{n} \right) \text{ and } f''(t) = \left(\frac{2ct}{n} \right) e^{-\frac{ct^2}{n}} \left(\frac{2ct^2}{n} - 3 \right).$$

It is easily verified that f is monotone increasing for $0 \le t \le \left(\frac{n}{2c}\right)^{\overline{2}}$, monotone decreasing for $t \ge \left(\frac{n}{2c}\right)^{\frac{1}{2}}$, and takes a maximum value of $\left(\frac{n}{2ec}\right)^{\frac{1}{2}}$ when $t = \left(\frac{n}{2c}\right)^{\frac{1}{2}}$. Also f is concave downward for $0 \le t \le \left(\frac{3n}{2c}\right)^{\frac{1}{2}}$. Choose an integer h_0 such that

$$h_0-1<\left(\frac{n}{2c}\right)^{\frac{1}{2}}\leq h_0.$$

Robinson and Borwein, Tauberian theorem for Borel-type methods of summability

Since $\left(\frac{3n}{2c}\right)^{\frac{1}{2}} \ge \left(\frac{n}{2c}\right)^{\frac{1}{2}} + 1 > h_0$ if $n > (2 + \sqrt{3})c$, it follows that f is concave downward for $h_0 - 1 \le t \le h_0$ when $n > (2 + \sqrt{3})c$. Set

$$a(t) = he^{-\frac{ch^2}{n}}, \qquad h \le t < h+1$$

$$b(t) = (h+1)e^{-\frac{c(h+1)^2}{n}}, \quad h \le t \le h+1.$$

Then

$$b(t) < f(t) \le a(t)$$
 for $t \ge h_0$

while

$$a(t) \le f(t) < b(t)$$
 for $0 \le t \le h_0 - 1$.

Then

$$\int_{0}^{\infty} f(t)dt \ge \int_{0}^{h_{0}-1} a(t)dt + \int_{h_{0}-1}^{h_{0}} f(t)dt + \int_{h_{0}}^{\infty} b(t)dt$$

$$= \int_{0}^{\infty} b(t)dt - \int_{0}^{h_{0}} \{b(t) - a(t)\}dt - \int_{h_{0}-1}^{h_{0}} a(t)dt + \int_{h_{0}-1}^{h_{0}} f(t)dt$$

$$= S - f(h_{0}) - f(h_{0} - 1) + \int_{h_{0}-1}^{h_{0}} f(t)dt$$

$$= S - \int_{h_{0}-1}^{h_{0}} f(t)dt + 2\left(\int_{h_{0}-1}^{h_{0}} f(t)dt - \frac{f(h_{0} - 1) + f(h_{0})}{2}\right)$$

$$\ge S - \int_{h_{0}-1}^{h_{0}} f(t)dt \quad \text{if } n > (2 + \sqrt{3})c$$

$$\ge S - \left(\frac{n}{2ec}\right)^{\frac{1}{2}}.$$

The second inequality of the lemma follows. The first inequality can be proved in a similar way.

Lemma 9. For
$$\frac{1}{2} < \zeta < \frac{2}{3}$$
, $\sum_{|h| > (\alpha n)^{\zeta}} |h| e^{-\frac{ch^2}{n}} = O\left(\int\limits_{(\alpha n)^{\zeta}}^{\infty} e^{-\frac{ct^2}{n}} t dt\right)$.

Lemma 10.
$$\sum_{h=-\infty}^{\infty} |h|^3 e^{-\frac{ch^2}{n}} \ge 2 \left(\int_0^{\infty} e^{-\frac{ct^2}{n}} t^3 dt - \left(\frac{3n}{2ec} \right)^{\frac{3}{2}} \right) = \frac{n^2}{c^2} - \frac{1}{\sqrt{2}} \left(\frac{3n}{ec} \right)^{\frac{3}{2}}.$$

For n sufficiently large,

$$\sum_{h=-\infty}^{\infty} |h|^3 e^{-\frac{ch^2}{n}} \leq 2 \left(\int_{0}^{\infty} e^{-\frac{ct^2}{n}} t^3 dt + \left(\frac{3n}{2ec} \right)^{\frac{3}{2}} \right) = \frac{n^2}{c^2} + \frac{1}{\sqrt{2}} \left(\frac{3n}{ec} \right)^{\frac{3}{2}}.$$

Whence

(2.5)
$$\sum_{h=-\infty}^{\infty} |h|^3 e^{-\frac{ch^2}{n}} = O\left(\int_{0}^{\infty} e^{-\frac{ct^2}{n}} t^3 dt\right).$$

Journal für Mathematik. Band 273

3. Summability
$$(e, c)$$

Let c > 0. Then

$$\sum_{n=0}^{\infty} a_n = A(e,c) \quad \text{if} \quad \sqrt{\frac{c}{\pi n}} \sum_{n=-\infty}^{\infty} e^{-\frac{ch^2}{n}} A_{n+h} \to A \quad \text{when } n \to \infty$$

(cf. [4], § 9. 10). Note that (2. 3) implies that summability (e, c) is a regular method.

Lemma 11. If $a_n = o(1)$, and either

(i)
$$\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$$
 or (ii) $\sum_{n=0}^{\infty} a_n = A(e, c)$,

then $A_n = o(n^{\frac{1}{2}})$.

Proof. The result for case (i) is just Lemma 5 of Borwein [3] with k = 0, $\mu = 1$, and $\lambda = 0$, while case (ii) is Theorem 150 of Hardy [4].

In each of the next four lemmas, we let $h=m-n=m-\frac{x}{\alpha}$, choose $\frac{1}{2}<\zeta<\frac{2}{3}$, and assume the condition

(3. 1)
$$A_n = o\left(n^{\frac{1}{2}}\right).$$
 Lemma 12.
$$e^{-\alpha n} \sum_{|h| > (\alpha n)^{\xi}} A_m \frac{(\alpha n)^{am+\beta-1}}{\Gamma(\alpha m + \beta)} = o(1) \quad \text{as } n \to \infty.$$
 Proof. We have

Proof. We have
$$e^{-\alpha n} \sum_{|h| > (\alpha n)^{\xi}} A_m \frac{(\alpha n)^{\alpha m + \beta - 1}}{\Gamma(\alpha m + \beta)}$$

$$= O\left(e^{-\alpha n} \sum_{|h| > (\alpha n)^{\xi}} m^{\frac{1}{2}} \frac{(\alpha n)^{\alpha m + \beta - 1}}{\Gamma(\alpha m + \beta)}\right) \qquad \text{(by (3. 1))}$$

$$= O\left((\alpha n)^{\frac{1}{2}} e^{-\alpha n} \sum_{|h| > (\alpha n)^{\xi}} \frac{(\alpha n)^{\alpha m + \beta - \frac{3}{2}}}{\Gamma\left(\alpha m - \beta - \frac{1}{2}\right)}\right) \qquad \text{(by Lemma 2)}$$

$$= O\left((\alpha n)^{\frac{1}{2}} e^{-(\alpha n)^{\eta}}\right) \text{(where } 0 < \eta < 2\zeta - 1, \text{ by (2. 1) with } x = \alpha n)$$

$$= o(1) \qquad \text{as } n \to \infty.$$

Lemma 13.
$$\sum_{|h| \le (\alpha n)^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} O\left(\frac{|h|+1}{n}\right) = o\left(n^{\frac{1}{2}}\right) \quad as \quad n \to \infty.$$

Proof.
$$\sum_{|h| \le (\alpha n)^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} O\left(\frac{|h|+1}{n}\right)$$

$$= \sum_{|h| \le (\alpha n)^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} o\left(n^{\frac{1}{2}}\right) O\left(\frac{|h|+1}{n}\right) \quad \text{(by Lemma 4)}$$

$$= o\left(n^{-\frac{1}{2}}\right) \sum_{|h| \le (\alpha n)^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} O(|h|+1) \quad \text{(by Lemma 4)}.$$

$$= o\left(n^{-\frac{1}{2}} \sum_{|h| \le (\alpha n)^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} (|h|+1)\right)$$

$$= o\left(n^{-\frac{1}{2}} \int_{0}^{\infty} e^{-\frac{\alpha t^{2}}{2n}} (t+1) dt\right) \quad \text{(by Lemma 7 and (2. 4))}$$

$$= o\left(n^{-\frac{1}{2}} \left\{\frac{n}{\alpha} + \frac{1}{2}\right\} \sqrt{\frac{2\pi n}{\alpha}}\right\} = o\left(n^{\frac{1}{2}}\right).$$

Lemma 14.
$$\sum_{|h| \le (\alpha n)^{\zeta}} e^{-\frac{\alpha h^3}{2n}} A_{n+h} O\left(\frac{|h|^3}{n^2}\right) = o\left(n^{\frac{1}{2}}\right) \quad \text{as } n \to \infty.$$

Proof.
$$\sum_{|h| \le (\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} O\left(\frac{|h|^{3}}{n^{2}}\right) = o\left(n^{-\frac{3}{2}} \sum_{|h| \le (\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} |h|^{3}\right)$$
 (by Lemma 4)
$$= o\left(n^{-\frac{3}{2}} \int_{0}^{\infty} e^{-\frac{\alpha t^{2}}{2n}} t^{3} dt\right)$$
 (by (2.5))

$$= o\left\{n^{-\frac{3}{2}} \frac{2n^2}{\alpha^2}\right\} = o(n^{\frac{1}{2}}).$$

Proof.
$$\sum_{|h|>(\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} = \sum_{|h|>(\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} O(|h|)$$
 (by Lemma 5)
$$= O\left(\sum_{|h|>(\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} |h|\right)$$

$$= O\left(\int_{(\alpha n)^{\zeta}}^{\infty} e^{-\frac{\alpha t^{2}}{2n}} t dt\right)$$
 (by Lemma 9)
$$= O\left(\frac{n}{\alpha} e^{-\frac{\alpha^{2\zeta+1} n^{2\zeta-1}}{2}}\right)$$

$$= O(n e^{-\varrho n^{a}}) where $\varrho = \frac{\alpha^{2\zeta+1}}{2} and a = 2\zeta - 1 > 0$

$$= o(1) as n \to \infty.$$$$

Lemma 16. If $e^{-x} \sum_{m=N}^{\infty} A_m \frac{x^{am+\beta-1}}{\Gamma(\alpha m+\beta)} \to 0$ as $x \to \infty$ through integer multiples of α , then it approaches zero as $x \to \infty$ (without restriction).

Proof. Letting $h = m - n = m - \left[\frac{x}{\alpha}\right]$, it follows just as in Lemmas 12, 13, and 14 respectively, that

(3.2)
$$e^{-x} \sum_{|h| > x^{\xi}} A_m \frac{x^{am+\beta-1}}{\Gamma(\alpha m + \beta)} = o(1) \quad \text{as } x \to \infty,$$

$$(3.3) \qquad \sum_{|h| \leq x^{\zeta}} e^{-\frac{\alpha^{2}h^{2}}{2x}} A_{n+h} O\left(\frac{|h|+1}{x}\right) = o\left(x^{\frac{1}{2}}\right) \quad \text{as } x \to \infty,$$

and

(3.4)
$$\sum_{|h| \leq x^{\zeta}} e^{-\frac{\alpha^{2}h^{2}}{2x}} A_{n+h} O\left(\frac{|h|^{3}}{x^{2}}\right) = o\left(x^{\frac{1}{2}}\right) \quad \text{as } x \to \infty.$$

Thus, using (3. 2), (2. 2), (3. 3), and (3. 4), we obtain:

(3.5)
$$e^{-x} \sum_{m=N}^{\infty} A_m \frac{x^{am+\beta-1}}{\Gamma(\alpha m + \beta)} = \frac{1}{\sqrt{2\pi x}} \sum_{|h| \le x^{\xi}} A_{n+h} e^{-\frac{\alpha^2 h^2}{2x}} + o(1)$$
 as $x \to \infty$.

21*

161

$$(\alpha n)^{-\frac{1}{2}}\sum_{|h|\leq x^{\xi}}e^{-\frac{\alpha h^2}{2n}}A_{n+h}=o(1)$$
 as $n\to\infty$

implies

$$x^{-\frac{1}{2}} \sum_{|h| \le x^{\xi}} e^{-\frac{\alpha^{2}h^{2}}{2x}} A_{n+h} = o(1) \quad \text{as } x \to \infty.$$

Since

$$x^{-\frac{1}{2}} = (\alpha n)^{-\frac{1}{2}} + O(n^{-\frac{3}{2}})$$

and

$$e^{-rac{lpha^2h^2}{2(lpha n+k)}} = e^{-rac{lpha^2h^2}{2n}} \Big\{ 1 + O\Big(rac{h^2}{n^2}\Big) \Big\} = e^{-rac{lpha^2h^2}{2n}} \Big\{ 1 + O\Big(rac{\mid h\mid +1}{n}\Big) \Big\} \ ,$$

the result follows.

Theorem 2. If $A_n = o(n^{\frac{1}{2}})$, then

$$\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta) \quad \text{if and only if} \quad \sum_{n=0}^{\infty} a_n = A\left(e, \frac{\alpha}{2}\right) \qquad \text{(cf. [4], Theorem 151)}.$$

Proof. We assume as we may without loss of generality (because both methods are regular) that A=0. We further assume, without loss in generality, that

$$a_0=\cdots=a_{N-1}=0,$$

so that $A_m = 0$ if m < N.

Let
$$x = \alpha n$$
, $\frac{1}{2} < \zeta < \frac{2}{3}$, and $h = m - n = m - \frac{x}{\alpha}$. Then

$$\begin{split} e^{-\alpha n} \sum_{m=N}^{\infty} A_m \frac{(\alpha n)^{\alpha m+\beta-1}}{\Gamma(\alpha m+\beta)} \\ &= e^{-\alpha n} \sum_{|h|>(\alpha n)^{\xi}} A_m \frac{(\alpha n)^{\alpha m+\beta-1}}{\Gamma(\alpha m+\beta)} + e^{-\alpha n} \sum_{|h|\leq (\alpha n)^{\xi}} A_m \frac{(\alpha n)^{\alpha m+\beta-1}}{\Gamma(\alpha m+\beta)} \\ &= o(1) + n^{-\frac{1}{2}} \left\{ \sum_{|h|\leq (\alpha n)^{\xi}} e^{-\frac{\alpha h^2}{2n}} A_{n+h} + \sum_{|h|\leq (\alpha n)^{\xi}} e^{-\frac{\alpha h^2}{2n}} A_{n+h} O\left(\frac{|h|+1}{n}\right) \right. \\ &+ \sum_{|h|\leq (\alpha n)^{\xi}} e^{-\frac{\alpha h^2}{2n}} A_{n+h} O\left(\frac{|h|^3}{n^2}\right) \right\} \\ &\qquad \qquad \left. \left(\text{by Lemma 12 and (2. 2) with } x = \alpha n \right) \right. \end{split}$$

$$= n^{-\frac{1}{2}} \sum_{|h| \le (\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} + o(1)$$
 (by Lemmas 13 and 14).

Since

$$\sum_{|h|>(\alpha n)^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} A_{n+h} = o(1) \qquad \text{(by Lemma 15)},$$

it follows that

$$e^{-\alpha n} \sum_{m=N}^{\infty} A_m \frac{(\alpha n)^{\alpha m + \beta - 1}}{\Gamma(\alpha m + \beta)} = o(1)$$
 as $n \to \infty$

if and only if

$$n^{-\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{\alpha h^2}{2n}} A_{n+h} = o(1) \quad \text{as } n \to \infty;$$

i. e., if and only if $\sum_{n=0}^{\infty} a_n = 0 \left(e, \frac{\alpha}{2} \right)$.

The result follows in view of Lemma 16.

Corollary. If $a_n = o(1)$, then $\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$ if and only if $\sum_{n=0}^{\infty} a_n = A\left(e, \frac{\alpha}{2}\right)$. Proof. Use Lemma 11 and Theorem 2.

Theorem 3. If $A_n = o(n^{\frac{1}{2}})$ and $\sum_{n=0}^{\infty} a_n = A(e, c)$ then for 0 < d < c, $\sum_{n=0}^{\infty} a_n = A(e, d)$.

The result remains true if $A_n = o(n^{\frac{1}{2}})$ is replaced by $a_n = o(1)$.

Robinson and Borwein, Tauberian theorem for Borel-type methods of summability

Proof. With hypothesis $a_n = O(1)$ the result is Theorem 155 of Hardy [4]. Minor modifications of his proof yield the result with the hypothesis $A_n = o(n^{\frac{1}{2}})$.

4. Proof of Theorem 1

It is convenient to establish two preliminary results.

Theorem 4. If
$$a_n = O(n^{-\frac{1}{2}})$$
 and $\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$ then
$$A_n = O(1) \qquad \text{(cf. [4], Theorem 156)}.$$

Proof. Since $a_n = O(n^{-\frac{1}{2}})$, we have $a_n = o(1)$, and thus $A_n = o(n^{\frac{1}{2}})$ by Lemma 11. Therefore $\sum_{n=0}^{\infty} a_n = A\left(e, \frac{\alpha}{2}\right)$ by Theorem 2. Thus

$$\left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{\alpha h^2}{2n}} A_{n+h} = A + o(1) \quad \text{as } n \to \infty.$$

Since

$$\left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{n=-\infty}^{\infty} e^{-\frac{\alpha h^2}{2n}} = 1 + o(1)$$

by (2. 3), it follows that

$$A_n \{1 + o(1)\} = \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{\alpha h^2}{2n}} \{A_{n+h} + (A_n - A_{n+h})\}.$$

Thus

$$(4.1) A_n \{1 + o(1)\} = A + o(1) + \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{|h| > n^2} e^{-\frac{\alpha h^2}{2n}} (A_n - A_{n+h}) + \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{|h| \le n^2} e^{-\frac{\alpha h^2}{2n}} (A_n - A_{n+h}).$$

Since $a_n = o(1)$, it follows that $A_n - A_{n+h} = O(|h|)$. Thus

$$\begin{split} \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{|h| > n^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} (A_{n} - A_{n+h}) &= O\left\{n^{-\frac{1}{2}} \sum_{|h| > n^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} |h|\right\} \\ &= O\left\{n^{-\frac{1}{2}} \int_{n^{\zeta}}^{\infty} e^{-\frac{\alpha t^{2}}{2n}} t dt\right\} \\ &= O\left\{n^{\frac{1}{2}} e^{-\frac{\alpha n^{2\zeta - 1}}{2}}\right\} = o(1) \end{split}$$
 (by Lemma 9)

as $n \to \infty$, since $\alpha > 0$ and $2\zeta - 1 > 0$.

Robinson and Borwein, Tauberian theorem for Borel-type methods of summability

163

That is

$$(4.2) \qquad \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{|h| > n^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} (A_{n} - A_{n+h}) = o(1) \quad \text{as } n \to \infty.$$

Nov

$$\begin{split} \left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} & \sum_{|h| \leq n^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} (A_{n} - A_{n+h}) = O\left\{\frac{1}{n} \sum_{|h| \leq n^{\zeta}} e^{-\frac{\alpha h^{2}}{2n}} |h|\right\} & \text{(by Lemma 6)} \\ & = O\left\{\frac{1}{n} \int_{0}^{\infty} e^{-\frac{\alpha t^{2}}{2n}} t dt\right\} & \text{(by (2. 4))} \\ & = O(1). \end{split}$$

That is

(4.3)
$$\left(\frac{\alpha}{2\pi n}\right)^{\frac{1}{2}} \sum_{|h| \le n^{\xi}} e^{-\frac{\alpha h^{2}}{2n}} (A_{n} - A_{n+h}) = O(1).$$

It follows from (4.1), (4.2), and (4.3) that

$$A_n\{1 + o(1)\} = A + o(1) + o(1) + O(1) = O(1).$$

Therefore $A_n = O(1)$.

Theorem 5. If $\sum_{n=0}^{\infty} a_n = A(B, \alpha, \beta)$ and $A_n = O(1)$ then $\sum_{n=0}^{\infty} a_n = A(e, c)$ for all positive c.

Proof. Since $A_n = O(1)$, $A_n = o(n^{\frac{1}{2}})$ and thus $\sum_{n=0}^{\infty} A_n = A\left(e, \frac{\alpha}{2}\right)$ by Theorem 2. Therefore

(4.4)
$$\sum_{n=0}^{\infty} a_n = A(e, c) \quad \text{for } 0 < c \le \frac{\alpha}{2}$$

by Theorem 3

Now let $z=x+iy\in K$ (the complex plane). Choose $y_0>0$ and $0< x_0<\frac{\alpha}{2}$. Let $D=\{z\in K\colon x>x_0 \text{ and } |y|< y_0\}$ and

$$\phi_n(z) = \left(\frac{z}{\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{zh^2}{n}} A_{n+h} = \left(\frac{z}{\pi n}\right)^{\frac{1}{2}} \sum_{h=-n}^{\infty} e^{-\frac{zh^2}{n}} A_{n+h}.$$

Since $\left|e^{-\frac{zh^2}{n}}A_{n+h}\right| \leq H\left(e^{-\frac{x_0}{n}}\right)^{h^2}$ for some constant H and all $z \in D$, it follows that

$$\sum_{h=-n}^{\infty} e^{-\frac{zh^2}{n}} A_{n+h}$$

converges uniformly in D and thus that $\phi_n(z)$ is analytic in D $(n = 1, 2, 3, \ldots)$.

 $\operatorname{In} D, |z| \leq x \left\{ 1 + \left(\frac{y_0}{x_0} \right)^2 \right\}^{\frac{1}{2}} \text{ and therefore } \left(\frac{|z|}{\pi n} \right)^{\frac{1}{2}} = O\left(\sqrt{\frac{x}{\pi n}} \right) \text{ uniformly for all } z \in D. \text{ Thus}$

$$|\phi_n(z)| = O\left(\sqrt{\frac{x}{\pi n}} \sum_{h=-\infty}^{\infty} e^{-\frac{xh^2}{n}}\right) = O\left\{1 + O\left(\sqrt{\frac{x}{n}}\right)\right\}$$
 (by Lemma 7)
= $O(1)$

if x is bounded above (say if $x_0 \le x \le x_1$).

Therefore $\{\phi_n(z)\}$ is almost uniformly bounded in D (i. e., it is uniformly bounded on compact subsets of D).

Since $\phi_n(c) \to A$ as $n \to \infty$ for $x_0 \le c \le \frac{\alpha}{2}$ by (4. 4), the sequence $\{\phi_n\}$ satisfies the hypotheses of the following theorem of Vitali (cf. [5], p. 117; [6], p. 168; or [7], chapter 4, § 5).

Let D be a region of the complex plane and suppose:

- (i) $\{\phi_n\}$ is a sequence of functions analytic and almost uniformly bounded in D, and
- (ii) there exists a sequence $\{Z_m\}$ (of distinct Z's) in D with at least one limit point $Z_0 \in D$ such that $\lim_{n \to \infty} \phi_n(Z_m)$ exists (necessarily finite because of (i)) for $m = 1, 2, 3, \ldots$ Then there exists a function $\phi(z)$, analytic in D, such that $\{\phi_n(z)\}$ converges almost uniformly to $\phi(z)$ in D.

It follows that $\phi_n(z) \to A$ as $n \to \infty$ for all $z \in D$. In particular $\sum_{n=0}^{\infty} a_n = A(e, c)$ for $x_0 \le c < +\infty$. Combining this with (4. 4) gives the theorem.

We now prove Theorem 1.

Proof. It follows from Theorems 4 and 5 that

(4.5)
$$\left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{ch^2}{n}} A_{n+h} = A + o(1) \quad \text{as } n \to \infty \text{ for all } c > 0.$$

Since $a_n = o(1)$, $A_n - A_{n+h} = O(|h|)$ and

(4.6)
$$\left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{|h| > n^{\zeta}} e^{-\frac{ch^2}{n}} (A_n - A_{n+h}) = o(1) \quad \text{as } n \to \infty.$$

Just replace $\frac{\alpha}{2}$ by c in (4.2).

Since for any fixed positive c

$$\left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{n=-\infty}^{\infty} e^{-\frac{ch^2}{n}} = 1 + o(1) \quad \text{as } n \to \infty \text{ by } (2.3),$$

it follows that

$$\begin{split} A_n\{1+o(1)\} &= \left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{ch^2}{n}} (A_n - A_{n+h}) + \left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{h=-\infty}^{\infty} e^{-\frac{ch^2}{n}} A_{n+h} \\ &= \left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{|h| \leq n^2} e^{-\frac{ch^2}{n}} (A_n - A_{n+h}) + o(1) + A + o(1) \end{split}$$

by (4.5) and (4.6). Thus

(4.7)
$$A_n - A = \left(\frac{c}{\pi n}\right)^{\frac{1}{2}} \sum_{|h| \le n^{\xi}} e^{-\frac{ch^2}{n}} (A_n - A_{n+h}) + o(1)$$

since

$$A_n \cdot o(1) = O(1) \cdot o(1) = o(1).$$

Now $|A_n - A_{n+h}| \le \frac{H \mid h \mid}{\sqrt{n}}$ for some constant H and for all h with

$$|h| \le n^{\zeta}$$
 and $n = 1, 2, 3, ...,$

by Lemma 6.

Therefore

$$\begin{split} \left| \left(\frac{c}{\pi n} \right)^{\frac{1}{2}} \sum_{|h| \le n^{\zeta}} e^{-\frac{ch^{2}}{n}} \left(A_{n} - A_{n+h} \right) \right| & \le \left(\frac{H}{n} \right) \left(\frac{c}{\pi} \right)^{\frac{1}{2}} \sum_{|h| \le n^{\zeta}} e^{-\frac{ch^{2}}{n}} |h| \\ & \le \left(\frac{H}{n} \right) \left(\frac{c}{\pi} \right)^{\frac{1}{2}} \left\{ \frac{n}{c} + \left(\frac{2n}{ec} \right)^{\frac{1}{2}} \right\} \\ & = \frac{H}{\sqrt{\pi c}} + o(1) \quad \text{as } n \to \infty. \end{split}$$
 (by Lemma 8)

It follows from (4.7) that

$$|A_n - A| \leq \frac{H}{\sqrt{\pi c}} + o(1).$$

Thus

$$\limsup_{n\to\infty} |A_n - A| \leq \limsup_{n\to\infty} \left(\frac{H}{\sqrt{\pi c}} + o(1) \right) = \frac{H}{\sqrt{\pi c}}.$$

Since this holds for all positive c, $\lim_{n\to\infty} A_n = A$ and Theorem 1 is proved.

References

- [1] D. Borwein, Relations between Borel-type methods of summability, Journal London Math. Soc. 35 (1960), 65-70.
- [2] D. Borwein, On methods of summability based on integral functions. II, Proc. Cambridge Phil. Soc. 56 (1960), 125—131.
- [3] D. Borwein, A Tauberian theorem for Borel-type methods of summability, Canadian Journal of Math. 21 (1969), 740—747.
- [4] G. H. Hardy, Divergent Series, Oxford 1949.
- [5] J. E. Littlewood, Lectures on the theory of functions, Oxford 1943.
- [6] E. C. Titchmarsh, The theory of functions, (2nd edition), Oxford 1939.
- [7] W. A. Veech, A second course in Complex Analysis, New York-Amsterdam 1967.

Department of Mathematics, University of Western Ontario, London, Canada N6A 5B9

Eingegangen 16. November 1972