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1. Introduction

Let X a, be a series of complex numbers. Let A, denote the partial sum
n=0

G0+"‘+dn

of the series if n = 0 and let A, = 0 if n < 0. Suppose throughout that « > 0, § is real,

and &V is a non-negative integer such that «/V -+ f > 0. The series is said to be summable
o0 0 A pantp-1

i = i E L e T

(B, o, p) to A (We write ﬂzjo a, = A(B,«, ﬁ)) if, as z—o0, «e nj‘% F(canrﬁ)% e

actual choice of &V is clearly immaterial. The Borel-type summability method (B, «, f8)
is regular, and (B, 1, 1) is the standard Borel exponential method 5.

Our aim in this paper is to prove the following Tauberian theorem.
oo oAl o

Theorem 1. If X a,= A(B,«,f) and a,=0(n %) then X a,= A.
n=0 n=0

The case « = 8 = 1 of the theorem is known ([4], Theorem 156) as is the corre-
gponding result with “O" replaced by *‘o”.
Borwein [2] has proved:

Ifdi(z)= né‘;ﬁ where h(z) is an analytic function of z = x + iy in the region

x > x4, such that

() when x> =, and [z| is large h(z) —Z"“ﬁe?’z{C -+ 0 (i)l where C > 0, x >0,
g and y are real, and [z1/])

(i) (el 5s Teal for o> xy,
then

20‘0( . )Anx"wwél as a:»oo)

:ZO gi=sA (T} i e., (J(sc) 2\ wm

<

T e e (B,cx,ﬁ _;-%)
n=0
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In particular, taking h(z) = {I'(az + b)}° (z + p)®*" where b, ¢, p, q, and r are real,

>0 and ac + ¢ > 0, sothat

_oow ' a
J(Z) £ 'né;\f {F(Gn + b)}ﬂ(n +p)qn+r ’

then 20 a, = A(J) if and only if zo‘oan:A(B, ac+q,be +-rt 15—6)-
n= n=>0 :
It follows that Theorem 1 is in fact a Tauberian theorem for quite a wide class of
summability methods.

Theorem 1 remains true if 2,‘ a, = A(B, «, f) is replaced by 2‘ a,=A(B', «, ),

n=0
by which it is meant that, as y - oo,

y
Sl S

[

- N_]_, GE A A

This is a consequence of the following known result ([1], Theorem 2):

2a,=A(B,x 4+ 1) if and only if ZQ—A( e 0

n=0 n=0

2. Preliminary results

1
Lemma 1. Let z > 0, h—n—i,2 §<%,and0<n<25_1.

Then forn— N N+, .0,

9.1 Ry
: e ) e TE F S o
an
an+p—1 _o'h?
L T n e L ol 5 }
o R =
x

Formulae (2. 1) and (2. 2) also hold with h—n —

Proa.f. Formulg (2.1) is Lemma 2, part (d) of Borwein [3], while Borwein would
have obtained (2. 2) instead of part (e) of the same lemma if he had not used

|2 +1 & AR
_x—_zo(x:}é‘ 2) and ngl el 0(2’)3'}-2)

in simplifying near the end of his proof.

3 h (LN
(We write O(l—‘-xi—) instead of O (LZ—I) in order to include the case h= O.)

. x
Taking h=n— [;} would have necessitated only minor changes in his proof.
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n? 1
Lemma 2. =0 . qor =N N+-1 55
Ten A |\ Ton+ f—t

Proof. Tt follows from Stirling’s theorem that

T(an + p) = (2%);8”‘"(0”’*)WM_{1 1 O( )}

(ocn)%T(ocn-‘r ﬁ—%)

Thus Ton =5 -1 and the lemma follows.
Lemma 3. Let %< v <-§—. If a,=o(1) and |k| < n%, then
Api— A, = of(|R]) as n-» oo,

uniformly for |h| = nt.

Proof. The result is a special case of a known result ([4], Theorem 144); it may
easily be verified directly.

1
Lemma 4. Let%< & <% v Af A= o(ni) and |h| < (an)’, then

1
A,y =0(n%) as n-—» oo,
uniformly for |h| < (xn)’.

1

Proof. [ n+ﬂ (1+ h) Mé(i%- (m;);)z [Anir ] gince
( 2

(=30

n 1
n2 n -+ h) (n + h)2
n+h=n—(@n and n— (xn)—>oco as n— oo,
we have
—AfﬂT: o(1) as n— oo,
(n + h)®

uniformly for || < (xn)°. Since
1

14 :
(1+ rxn))—ﬂ as n-— oo,

the result follows.

Lemma 5. Let é = <£. It A, = o(n2) and |h| > (an)® > 0, then
Apyn = O(|R]).
i 1
Proof. Tt follows from A, —o(n®) that A, , = O((n + |k|)*). Note that
3 1 3 1

Since |k| > (xn)’,
1 1
n+ |kl =O0(R|*) + |k| = O(|2|%),

1 1
so that (n -+ |k))2= O(|kh|*) = O({h]), and the result follows.
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1
Lemma 6. If n is a positive integer and a, = O(n *), then, for |h| = n’,

h|
Ay (|—_) ;
+h Vn
Proof. This may be readily verified.
The remaining results of this section give estimates of certain sums in terms of
integrals. The proofs are elementary. Part of Lemma 8 is proved to give an idea of what

is involved. Otherwise the proofs are omitted. Throughout the rest of this section n is
a positive integer and ¢ > 0.

o i)
Lemma 7. > e ﬂ—2f€ G e
h=—o00 ]
Whence
e = .
P, Pt R
(2. 3) o hz%‘m e 1+ 0(n 2),

uniformly in any finite intereal 0 =< ¢ < k (cf. [4], Theorem 140).

&4 aroh ol H 1
Lemma 8. > ke 22 e “tdté(ﬁ) :(ﬁ)_(gﬁ) ;
e ec ¢ ec
b
For n sufficiently large,
ch? e ot? 9 % 9 %
S Thle Tenle Ay _n)
h:‘_‘,‘w\h|e :2fe tdtJr(ec) (6)4—(“ )
0
Whence
= ch et
(2. 4) > |Rkle ”:O({e ”tdt).
h=—o0 4
0

ch® ch? et?

Proof. Lot S = Sl fe " 80, thatis > hlie’ ™ — 28, Let f(ty='te ". Then
h=1

h=—c0

ot® cf?
; et 2t i et \is (120
e (1~ . ) and (1) f(én—)e (7_3).
1
3 2
It is easily verified that f is monotone increasing for 0 =< ¢ = (%) , monotone de-
o \2 S G
creasing for t = || , and takes a maximum value of (——— when {= (“) . Also
2¢ Zec 2c
i !

L .
f is concave downward for 0§t§(3—2) . Choose an integer h, such that

1

n 2
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1 1
; 3nh? n \? : e ;
Since o = 5 +4 = hotn> (24)3 Je, it follows that f is concave

downward for hy—1 < t < hy when n> (2 + V?T) c. Set

a(t) =he ", B e et
_en 1
Bty=1k-tlie 2 L h=t=h 11
Then
b(t) < f(t) < a(t) for ¢ > h,
while
alt) < f(t) < b(2) for 0= B il
Then
0 ho—1 iz_u o0
[ f(t)dt = [ a@dt + [ fe)dt + f b(t)dt
0 0 ho—1 Fy
o o

hy I
= b(t)dt—f B() —a(t)}dt — fa(t)dt+ ff(z)dz

hy

— S —f(h) —flha— 1) + [ flt)ee

ho—1

T B .
S f fiyde + 2( f e e T )
) Rt

N
e ff(t)dt if n>(@24+)3)e
Bo—1

n \2
S
= (266) )

The second inequality of the lemma follows. The first inequality can be proved in a
similar way.

chxl 00 el?
1 2 S T
Lemma 9. For5<§' <3, Ih|>€ﬂ)‘:|h18 0( fﬂ tdt) :

ch? SO et 8 8
& i e 3n\2 n’ 1 /3n\2
s 3 ” > 43 . s | [ SR e N B oo [ L Y
Temma10. 3 |hf% _2(fe £ di (Zec) ) =73 (ec) :
For n sufficiently large,

ch?

0 8
& e = 3n\2 n? 1 /3n\2
h3 < By . — et e
h:%‘m! Ie. 52<fe tdt+(280)> c2+]/2(ec) f
0 .

Whence
ch? o0 ct?
= T “n o3
(2. 5) > et =0 e didl
h=—o0
0
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3. Summability (e, ¢)
Let ¢ > 0. Then

ch?

2= Ale;e) i ] e "Ad,,>A when n>oo
n=0 TN p=—o

(cf. [4], §9. 10). Note that (2. 3) implies that summability (e, ¢) is a regular method.
Lemma 11. If a, = o(1), and either

(1)
then A, = D(I’LE).

Proof. The result for case (i) is just Lemma 5 of Borwein [3] with & = 0, =il
and 2 = 0, while case (ii) is Theorem 150 of Hardy [4].
2

In each of the next four lemmas, welet A=m—n = m—% , choose 5 < s 3
and assume the condition

Ihvg

G, =A(B,w,8) . or (i) Sa,=Als o),
n=0

n

1
G2 A, =o(n?).
— o 2 A ( )Em-'_ﬁ =
i L MR N L ey e UL
Proof. We have
ot (ocn)"m*'ﬂ”
% 2 e o e
© wstomt “* Tlam + §)
1 am+p—1
i L (o p)mte
iy an 2_——
_ (8 Ih\>gn)5m om 4 ﬁ)) (by 3. 1)
1 am-+p—3
=0 (xn)2e " (xnr) e

P ‘
[A] = (am)® F(rxm—ﬁ—%)

=0 ((xn)® e ") (where 0 <7 < 2¢ —1, by (2. 1) with z = 20

1

= o(1) as n- co.
oht
Lemma 13. m(Z)Ce_EA,H (MH_i) o(nz) as n-—oo.

_ okt \
Proof. s e A O (M)

(2] = (am)®

i | + 1 |
" Sé‘m; e ™ o(n 2) 0 ( % ) (by Lemma 4)
rxhs

=o(n z)thlﬂ( e 2Ok 4+ 1) (by Lemma 4).

=o(n_l = em%:(lh] - 1))

2
\ &) = (am)®

(by Lemma 7 and (2. 4))
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ou‘l 1

1
Lemma 14. 2 e A,,HkO( L]l )— o(né) as n-> oo,

4] < (am)®

oefe? ah?
e %Amo( ) (n L2 %m]s) (by Lismma:#)

[A] =(am)®
E [+ mtﬂ
( : f e g8 dt) (by (2. 5))

0

3 2
= 2n

=oin

} — o(nz)

ah?

Lemma 15. S e ™A, ,=o0(1) asn->oo.
[B] > (axm)® :
ek _ak?
B In A = 2n
Proof. e = >(ng e = 0(|h]) (by Lemma 5)

AR
=0( = e‘ﬂim)

| k| = (am)®

oo al?
=0 ( f gl tdt)
(am)®

20+1,20—1
Jio pe Gl
= ( L e )

(by Lemma 9)

X

i a2C+1
= 0(ne ™)  where p = 3 and a=2{—1>0
=o0(1) as n-—> oo.
oo am+f—1
Lemma 16. If e‘xmé'N A, P—(:;;n—_'_-ﬁ)—»o as x — oo through integer muliiples of o,

then it approaches zero as z— oo (without restriction).

Proof. Letting h=m—n=m — [g] , it follows just as in Lemmas 12, 13, and 14
respectively, that

am-+f—1
(3 2) e_-'f"l iCAm-F_(a;—m: 0(1) as ¥ — oo,

oth?

— 1
Dip 2y An+h0 (L;_l_)z 0(;172) as x - oo,

[n] =at

(3. 3)

and
ath?

S 3
%= An+h0( R

1 ¥
5 )=o(a¢2) as - oo.

(3. 4)

1] =2t

Thus, using (3. 2), (2. 2), (3. 3), and (3. 4), we obtain:

am+f—1 1 _ oAt
A, e 2 4+ o(l)  as z—occ.

BLR e 15 >
& T T T

= 218
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Letting = an + k where 0 < k < &, it follows from (3. 5) using Lemmas 12,
13, 14, and 15, that it is sufficient to prove that:

ah®

_1 rddis :
(an) 2 Z.e WA, —o1) ‘as n>oo,

IELS
implies
i e
x 2 e w4 =01 as x— oo,
Ihlézc “Ln+h ( )
Since
_1 il e
z F=lam) ¥ 0 (n 8
and

xthe PT L] 2 'xxhz
- E o) Ffr o[ 2]

the result follows.
1
Theorem 2. If A, = o(n?), then

20‘0 a,=A(B, x, ) if and only if 2070 a,= A (e, —%) (cf. [4], Theorem 151).
n=0 n=0

Proof. We assume as we may without loss of generality (because both methods
are regular) that A = 0. We further assume, without loss in generality, that

ay="r=ay, =0,
so that A, =0if m < NN.

Let x = an - <C<—%, and h=m-—n=m—-. Then

T o
— oo (cxn)zxm+ﬁ—1
i3 A N AN
f s TR
i ; (mn)exm+ﬁ’—1 7 (an)mm—ﬁ—ﬁ—l
pa an 2 an
T et T Tam T ) T et A Tam T )
1 oth’ ah“
= - - ey
for 2 2n Tom
it {mz{zm)i*e "+”+|hs<<an>c : A”*”0(. n
_oh?
LA 13)
“on
<t A”MO(
(by Lemma 12 and (2. 2) with z = «n)
1 ah?
= n_ilhlqz )Ce_-‘-EE A boll) (by Lemmas 13 and 14).
Since 3

ah?

; S X
Ik[>(ocn)':e AL = o) (by Lemma 15},

it follows that
i =) (“n)am+ﬁ—1
on A =
Lt wToman
if and only if :

e
n 21;, Sre Bl o= o(1) Y5 ann-roo:
=—00

e., if and only if Ea -—O(\ ) g
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The result follows in view of Lemma 16.
Corollary. If a, = o(1), then )_,‘ a, = A(B, «, ) if and only if 2 a, _A( 2)
n=0

Proof. Use Lemma 11 and Theorem 2.
A o0 00
Theorem 3. If A, = o(n?) and X a, = A(e, c) then for 0 <d <e¢, X a,= Ale,d).
n=0 n=>0

1
The result remains true if A, = 0(n2) is replaced by a, = o(1).
Proof. With hypothesis a, = O(1) the result is Theorem 155 of Hardy [4]. Minor
1
modifications of his proof yield the result with the hypothesis 4, =o(n?)

4. Proof of Theorem 1

It is convenient to establish two preliminary results.
ol o0
Theorem 4. /f a, = O(n %) and X a,= A(B,«, p) then
n=0
A, = 0(1) (cf. [4], Theorem 156).

-1 1
Proof. Sinco a,=O0(n *), we have a, = o(1), and thus 4, = o(n®) by Lemma 11.

Therefore 2 a,=A4A (e ) by Theorem 2. Thus
n=0

a«h?

{32 el :
(Z;n) L= e M Apn=4-+0(1) asn->oo

[y

Since

ah"

( ¢ ) S W =1 4ol

2nn h=—00

by (2. 3), it follows that

A ah?
Al + o =g 2 T A0+ (A — 4,00
Thus :
et o‘hz
i o
61 AL o) = A +olt) + (52 FeT (A — 4,

1 : ah?
EF (L)2 2 B_E (An e A'ﬂ-{-h)'

2an |h| =nf
Since a, = o(1), it follows that 4, — A, , = O(|%]). Thus
ah®

N o . _an
( ) < e 2”(A%—Aﬂ+h)=0{n &hlﬂie 2“}k|}

2an/ |n>at

co af?
n f ceet tdt} (by Lemma 9)
:

as n—> oo, since o >0 and 2 —1 > 0.

-
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That is
1 2
@ N o R e
4,2 —_— e n - =0 as n-—oo.
( ) (Zﬂn 1’ﬂ|>7\'; ( 7 n4h (
Now '

ah?

1 hi
o 2 Ll '1 e
( ) = il (A”MAWM):O{EW‘;;@B 3 'hl} W)

2an) |nzet

:0'—15 fe_%tdt] (by (2. 4))

o
0

That is

ah?

(4. 3) (E‘z_n) Méce‘ﬁmnm A =0(1).

(A

It follows from (4. 1), (4. 2), and (4. 3) that
A0+ o)} = 4 +o(1) + o(1) + 0(1) = O(1).
Therefore A, =0().

Theorem b. If Ean = A(B,x, B) and A, = O(1) then Eauz Ale, c) for all
positive c. vy et
1 ES
Proof. Since A, = 0(1), A, =o(n*) and thus ¥ 4,=4 (e,-%) by Theorem 2.
Therefore Aol
(4. 4) Sa,= A6 for0<c=y
n=0

by Theorem 3.
&x

Now let z=a + iy € K (the complex plane). Choose y, >0 and 0 <z, < 5 - Let
D—1{z€ Kix >uyand |u| < and

= % o0 _‘E_h_n z ;. o0 _z_h"
) =i = e n A = Z e 1 A .
‘i'bn( ) (.?'En) h=§oo n+h (Rn) ks w4k

i

= n
Since ‘ g AL

%o

hﬁ
<H (e ”) for some constant H and all z € D, it follows that

e
DN
h=—n
converges uniformly in D and thus that ¢,(z) is analyticin D (n =1,2,3,...).
1 1
213 3 e
In D, |z] < ac{i - (h) }2 and therefore ( ] )2 =0 (]/j_) uniformly for all

2 € D. Thus el & e

(e} _xﬁ e
s =o(|[Z Z %) =oltvo()/2 )} byLonma)

— 0(1)

if z 18 bounded above (say if z;, = = < x)).
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Therefore {4, (z)} is almost uniformly bounded in D (i. e., it is uniformly bounded
on compact subsets of D).

Since ¢,(c)> A as n>oo for z, < ¢ = 2 by (4. 4), the sequence {$,} satisfies the
hypotheses of the following theorem of Vitali (cf. [5], p. 117; [6], p. 168; or [7], chapter
i 5.5).

Let D be a region of the complex plane and suppose:

(1) {¢,} is a sequence of functions analytic and almost uniformly bounded in D,
and

(i1) there exists a sequence {Z,} (of distinct Z’s) in D with at least one limit point
Z,€ D such that ’51_{%0 ¢,(Z,,) exists (necessarily finite because of (i) for m =1,2,3,....

Then there exists:a function ¢(z), analytic in D, such that {¢,(2)} converges almost uniformly
to ¢(z) in D.

It follows that ¢,(z)>A4 as n—»>oo for all z€ D. In particular Lc‘oa,n = Af(e, ¢) for
Z, = ¢ < + oo. Combining this with (4. 4) gives the theorem. e

We now prove Theorem 1.

Proof. 1t follows from Theorems 4 and 5 that

L _om
(4. 5) (;n)z X e ® A = Adwal) as n—>oo for all ¢ > 0.
h=—oc0
Since a, = 0(1), A,— A, = O(|h]) and
% ch?
C o e
(4. 6) (ﬁ) (et T — A —oll) o8 nosoo.

4

( Just replace 9 by ¢ in (4. 2) )
Since for any fixed positive ¢

ch?

2
(L)z S e m—1 Loall) a5 n>cobyi2 3,

T h=—0c0
it follows that
¢ ch?

1 o _ch 1 el
Aﬂ{1+o<1)}:(—)“’ e ﬂ(AFAMH(—“)Z R

TN ) p=—o TN [ h=—oo

. 3 ch?
2 —
:( ¢ ) |h|§@<‘;e Bl d, ) ol A {01}

ah

by (4.5) and (4. 6). Thus
1
c

ch®
aTn ) 7] =nf

(4 7) A'n_'A :( _?(An'—An+h)+o(i)

since
A, o) =0(1) -o(1) =o(1).

' H|h
Now |A,—A4,.,= 7% for some constant H and for all £ with

|h| <% and m=1,23,...,
by Lemma 6.



164 Robinson and Borwein, Tauberion theorem for Borel-type methods of summabilily
Therefore
2 1 2
e \2 o H\/¢c\2 Lk
—] X e » (4 === ZX.e ®|h
(ﬂn) |5 =nt (4= 4nia) “(n)(ﬂ:) [ =nt !
H\[c\i 2n\2
2 n n\z
é(—) (i { (—) } (by Lemma 8)
— AR 7T (& ec
H

———+0(1) as n—>oo.

Vae

It follows from (4. 7) that

AR T L B
Vme
Thus
Jirn sup | A, — A | = Iim sup (L_Jr 0(1)) ol

n—>0c0 ac VE

Since this holds for all positive ¢, lim 4, = A and Theorem 1 is proved.

n->00
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