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TAUBERIAN THEOREMS FOR BOREL-TYPE METHODS
OF SUMMABILITY

BY
D. BORWEIN AND E. SMET

1. Introduction. Suppose throughout that s, a, (n=0,1,2,...) are arbitrary
complex numbers, that «>0 and £ is real and that N'is a non-negative integer such
that aN+2=1. Let

n S s 0 zam+ﬂ—1 4 i o] zom+ﬁ—1
Sn —‘Zﬂavv a..ﬁ(z) = ae n:zNSﬂ F(OCH-[—-ﬁ) ’ z,ﬁ(z) = e n:zNan F(an +ﬁ)

where z=x+iy is a complex variable and the power z’ is assumed to have its
principal value.

We shall be concerned with the Borel-type method of summability (B, «, §)
defined as follows (see [1]): we write s5,—s(B, «, B, or X¢ a,=s(B, «, ), if
Sa.p(x) exists for all x>0 and tends to s as x—»co. Further, we write
5,=0(1)(B, 2, ) if S, 4(x) exists and is bounded on [0, o).

The actual choice of the integer N in the above definitions is clearly immaterial.
We shall therefore tacitly assume whenever a finite number of methods (B, «, B,)
(r=1,2,...,k) are under consideration that N is such that aN+£,>1 (r=
1525 s wnnd)s

The following result is known (see [2]):

(A) If >p and 35 a,=3(B, a, p), then 35 a,=s (B, , p).
This result is “abelian” in character. Our object is to establish the “tauberian”
results listed in the next section.

One of our tauberian conditions involves the notion of “slow decrease” defined
as follows: a real-valued function £ (x), with domain [0, o), is slowly decreasing
if for every £>0 there exist positive numbers X, & such that S=fO)>—¢
whenever x> y>X and x—y<é.

2, Statements of the main results
Tueorem 1. If 37 a,=s(B, «, u) and a,—~0(B, a, f), then 20 a,=5(B, «, f).

TreoREM 2. If 5,—5(B, «, f+¢) for some >0 and $,=0()(B, «, ), then
Sp—>8(B, «, B+06) for any 6>>0.
THEOREM 2*. If 3T a,=s(B, o, f+&) for some >0 and a,=0(1)(B, «, B),
then 37 a,=5(B, «, $+0) for any 6>0.
THEOREM 3. If 5,—5(B, &, f+¢) for some ¢>0 and Sa.p(x) is slowly decreasing,
then 5s,—»s(B, «, B).
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THEOREM 3*. If 3¢ a,=s(B, «, f+¢) for some £>0 and A,g(x) is slowly
decreasing, then D¢ a,=s(B, «, f).

THEOREM 4. If 5,=0(1)(B, «, u) and s,>—K for all n>0 where K is a positive
constant, then s,=0(1)(B, =, f).

THEOREM 5. If 5,—s5(B, o, u) and 5,>—K for all n>0 where K is a positive
constant, then s,—s(B, a, £).

THEOREM 5*. If >3 a,=5(B, «, 4) and a,>—K for all n>0 where K is a
positive constant, then 3¢ a,=s(B, «, f).

The following theorems are extensions of a result due to Gaier [3].

THEOREM 6. If 5,—>s(B, o, u) and if there are positive real numbers A, a, &
such that |S, ,(2)| <A exp(a |z|) whenever Re z2>0, then s,—s(B, «, f).

TuEOREM 6*. If 3¢ a,=s(B, o, u) and if there are positive real numbers A, a, 0
such that |4,,,(z)| <A exp(a |z]) whenever Re z>6, then 3¢ a,=s(B, «, f).

TraeoreM 7. If 35 a,=s(B, «, u) and |a,| < K" for all n>0 where K is a positive
constant, then »o a,=s(B, «, f).

3. Preliminary results. It is known that the (B, «, f) method is regular (see
[2]). Also, using the root test and a known result [I, Lemma 4], it can readily be
shown that if either S, ,(x) or A4, ,(x) exists for all x>0 then both S, 5(x) and
A, 5(x) exist for all x>0.

LEmMMA 1. Let S, g(x) exist for x>0. Then, for x>0,

@) Seprs)=[0h(x—0)S, @) dt where 6>0 and h@)=u""1eT'(9),

() A, p(x)=38, ()=, pro(x)+0(1) as x—oc0.

Lemma 2. If 37 a,=s(B, «, f), then a,—~0(B, «, §).

The proof of Lemma 1 is straightforward, and Lemma 2 follows immediately

from Lemma 1(ii) and result (A).

TurOREM 8. Let f(t) be Lebesgue integrable on every finite subinterval of [0, o)
and let F(x)=[3 e~ """ f(t) dt. If F(x)—s as x—co and f(t) is slowly decreasing,
then f(x)—-s as x—0.

Proof. Since

FG) = fowg(u) du

where w = ¢® and
0 0<u<l,

gw) = {f(]n il 1
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Theorem 8 follows from a known result [4, p. 126]. (Observe that g(u) is “slowly
decreasing” in the sense given on p. 124 of [4]).

LemMA 3. If f(7) is bounded on every finite subinterval of [0, ) and is slowly
decreasing, then there exist positive numbers M, and M, such that

fx)—F(y) > —M(x—y)—M, whenever x>y > 0.

Proof. Since f(¢) is slowly decreasing, there exist positive numbers X, J such
that f(x)—f(»)>—1 if x>y>X and x—y<4. Hence, if x>y>X and m is the
smallest positive integer such that (x—y)/m<4, then

1610 =31 (3+52) =1 (34— 2|
> —m
= —(m-—1)—1

Thus, if M=supy.<x |f(*)|, then
fx)—f@) > —% (x—y)—2M—1 whenever x>y >0.

THEOREM 9. Let h(u) be a real-valued, nom-negative, Lebesgue measurable
function such that

0 <jmh(u) du < o and fwuh(u) dii < o,
1] o

Let f(t) be a real-valued function such that, for some positive numbers M, and M,
fG)=f(y) =2 —My(x—y)—M; whenever x>y 20,
and such that, for all x20,

F(x) w_-f:h(x—z) 7(0) dt

exists as a Lebesgue integral. Then, f(x) is bounded on [0, c0) whenever F(x) is
bounded on [0, o).

Proof. Suppose that My=sups, [F(x)|< 0.
Choose X such that

x
E =f h(u) du > 0.
0
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Now
760 [ = di = f “hx—D{f ) —f (O} di-+F(x)

wah(x—t){—Ml(x-—t)—Mz} dt+F(x)

S M, f ") du—sz h(u) du—M,
1] 0

=—M,
say, and hence f(x)> —M,/Lif x> X. But f(x)>—M,X—M,+/(0) for 0<x<X.
Hence there exists a positive number M such that f(x) > —M; for all x>0.
If x> X, then

M; > F(x)
x=X .
> f h(x—1)f(t) di+ f  x=n)f() dr

> —Msf_xh(x—r) d:+r = {fe=X)=Myt—x+X)—My} dt

X
= J‘V-’a+f(x—?f)j0 h(u) du

where
0 X X
M; = —Msfx h(u) du-]—le uh(u) du-—(MlX-}-Mz)J; h(u) du.
0
It follows that (Mz— Mg)/L>f(x) for x>0.
Thus f(x) is bounded on [0, o).

THEOREM 10. Let f(t) be a real-valued non-decreasing fumction defined on [0, o)
and, for §>0, let

F(x) = I%a) e‘“Lm(x—t)L?(t) e 220,

Then e~f (x) is bounded on [0, c0) whenever F(x) is bounded on [0, ).

Proof. Suppose M=sup, |F(x)|<co. Since f(f) is non-decreasing, we have,
for all x>0,

ST(8)eM > ST (9)eF(x+1)
x a1
= 6e~ f (x4+1—1Y (1) dt+6e_”f (x4+1—2)>f(r) dt
ox a:m+1 |
> 6e“”f (x+1—0(0) dt+c5e*"’f (x+1—0)%(x) dt

= f0){(x+1)°—1}e*+e7f(x).
It follows that e~ (x) is bounded on [0, o0).
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In what follows, suppose that H,={z | Re z>5}.

Gaier [3, Theorem 1] has proved the following result: If f'(z) is analytic in H,
and if there are positive numbers A, a such that |f(z)| <A exp(a |z|) for all z in H,,
then lim, . f'(x)=0 whenever lim,_,, f(x)=0.

However, by first making the transformation w=2z—b» and then using Cauchy’s
integral formula for £ (x) in Gaier’s proof, we can easily prove:

TueOREM 11. If f(2) is analytic in H, and if there are positive numbers A, a such
that |f(2)|<4 exp(alz]) for all z in H,, then lim, ., [ (x)=0 (n=1,2,...)
whenever lim,_,., [(x)=s.

4. Proof of the main results. We shall first prove Theorems 1, 2, 3, 4, 5, 6.

Proof of Theorem 1. Let k be a positive integer. Then, by result (A), we have
that 4, ;. -1).(x)—0 as x—o0. Moreover, by Lemma 1(ii),

Sap+t—02(X) = Az 12X+ Sy pira(x¥)+0(1) as x-— oo,

Hence, we have that if S, g ;,(x)—s as x—oco0, then S, g, (;_1).(X)—>s as x—co.
Since S, g 3o (X)—>s as x—o00 when f+ka>p by result (A), it follows that S, 5(x)—>s
as x—»o0.

Proof of Theorem 2. Suppose without loss of generality that the sequence
{8n) is real. Let 6>>0 and let M=sup,>, |S, 4(x)|. Let k be a positive integer and
let h(u)=u*2+e%T'(k—1+40). Then, by Lemma 1(i), we have, for x>y>0,
that

[Sa, g+ e—1)+8(%) = Sz pot (1345 (¥

f “hx—1S, (1) d+ fo (i) —h(y—1)}S, ,(0) dt

< Mr”("") dt—I—MJ.y!h(x-—t)—h(y—t)] dt

ng h(u)du—[—Mf [h(x—y+u)—h(u) du —-0 as x—y—0
0 0

since A(u) is Lebesgue integrable on [0, o). Further, by Lemma 1(i),

@
Sa,pre+s(X) =J; eh(m_ﬂsa..sﬂkmnw(i) dt.

Hence, by Theorem 8 (With F(x)=S5, s, 4, 5(X), f (¥)=S5, s+ e_1)1+5(¥)), We have that
if S, p1545(x)—s as x—co, then S, ;. 1), 5(¥)—>s as x—o0. Since S pinrs(X)—>s
as x—co when k492> ¢ by result (A), it follows that S, ;. ;(x)—s as x—co0.

Proof of Theorem 3. In view of Lemma 1(i) and Lemma 3, we have, by Theorem
9 (wWith F(x)=S,,5,..(x), f (x)=5,,4(x), h(u)=u*—1e=*|T'(¢)), that S, 4(x) is bounded
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on [0, c0). Hence, by Theorem 2, S, ;.,(x)—s as x—>c0. Thus, in view of Lemma
1(1), it follows, by Theorem 8 (with F(x)=S5, 5,,(x), f (x)=S,, p(x)), that S, z(x)—s
as xX—00.

Proof of Theorem 4. In view of Lemma 1(i), we can assume without loss of
generality that = f+d where 6>>0. The result then follows by Theorem 10 with
an+tf+5—1

_ i X
F(x) = S«.ﬁ-i—é(x)"‘fxe ﬂgvK T(an+p+3)

an+f—1

e f(x) = S, (%) + e~ EN & If(TJrﬂ) :

Proof of Theorem 5. Let k be a positive number such that u—k <p. Then, by
Theorem 4, 5,=0(1)(B, «, u—k) and hence, by Theorem 2, 5,—5(B, «, f).

Proof of Theorem 6. Let k be a positive integer such that u—k<p. Since
Sa,u-1(2)=8,,,(2)+dS, ,(z)/dz, it is readily seen that

ko g
Sz.u—k(z) = a,u(z)+ Z CJ' T Sa.ﬂ(z)
=1 " dz’
where ¢;, ¢p, . . . , ¢, are integers. Since 'S, (x)[dx'—0 as x>0 (j=1,2,...,k)
by Theorem 11, we have that S, , ,(x)—s as x—>co. Hence S, §(X)—>s as x—c0 by
result (A).

The proofs of Theorems 2*, 3*, 5%, 6* follow the same basic pattern which we
illustrate by one example.

Proof of Theorem 2*. By Lemma 2, a,—0 (B, «, f+¢) and hence, by Theorem 2,
a,—0(B, «, #+9) for any 6>0. The desired conclusion follows by Theorem 1.

Proof of Theorem 7. Since |a,|< K" for all n>0, we have that

|45,(2)] < 4 exp(K"* |z])
for some positive constant 4. The desired result follows by Theorem 6*.

5. Final remarks

1. Theorem 2 is false for §=0. This is shown by the following example
[ef. 4, p. 183]. Let {s,} be the sequence such that Sy 1(x)=sin ¢”. Then
Sy o(x)=e""{cos 1—cos ¢*}. Hence s5,—0(B,1,2) and s5,=0(1)(B,1,1) but s,
does not tend to a limit (B, 1, 1).

2. There exists a sequence {s,} which tends to a limit (B, «, §) but does not
tend to a limit (B, «, f—1). Choose an integer m such that am>1. Let P be the
smallest integer such that mP>N. Let x” sin =0 ob,x" and let

. [P(om-{-ﬁ)bk if n = mk,
“ 0 otherwise.
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Then
S,.5(x) = ae™®xF1x*mP gin ¢ =0 as x—»
and
Sa.p(%) = Sg p(x)+ 57, 5(x)
= ae " % F(am)x*™ e cos e® +o(l) as x—» oo.
Thus 5,—0(B, «, ) but 5,520(1)}(B, «, f—1).

Hence the tauberian theorems proved in this paper are not “empty””.

3. Corresponding to the Borel-type “‘exponential” method (B, «, f) is an
“integral” method (B', «, ) defined as follows (see [1]): 3¢ a,=s(B', «, f) if
A, 5(x) exists for all x>0 and lim, ., «™* [7 A4, 4(t) dt=5—sy_, (Where 5_,=0).

The following result is due to Borwein [1, Theorem 2]: 3¢ a,=s(B, a, f+1) if
and only if >3 a,=s(B’, «, B).

The tauberian theorems proved in this paper suggest that analogous results hold
for the method (B', «, f).

4. Let p(z)=2 . op,z" be an integral function such that p,>0, 37 p.>0
for all n. Associated with p(z) is an integral function method of summability P

1
defined as follows: s,—>s(P) if o S 0 PuSaX"—>S 28 X—>C0,

The following result is due to Borwein (see [2]): If 4(z) is analytic in H,, h(x) is
real for x>b and, when x>b and |z| is large, h(z)=2"""e"*{C+0(1/|z|)} where C, «
are positive and 3, y are real, then the method associated with the integral function

(3

p(z)=z;'f=M'h(—n) is equivalent to (B, o, f+1/2).

There should therefore be tauberian theorems of the sort proved in this paper for
a wide class of integral function methods.
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