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INTEGRATION BY PARTS OF CESARO SUMMABLE
INTEGRALS

D. BorwEINT.

ParT 1.

1. We shall suppose throughout that « is a non-negative integer and
shall denote by Qf (r=1 or 2) the class of functions ¢(z) which
have absolutely continuousi x-th derivatives, and which, for all z>1
and some pair of constants m, M, satisfy conditions (r) below:

(i) 0 <[d(z)| <m,
(i) [ #1ger00)|at < M| $(@).
Q) |$@)|>m >0,
) |40t < | @), %

T

i) [\ o) ae < | e .

We shall write, for x =1,
h(x) = 1/¢().

We shall suppose that f(z) denotes a function which is Lebesgue
integrable in every finite interval in (1, o), and shall use the notation:

nm=ﬂ@°mm:§5ﬂw4Wﬁww @>1, p>0).

2. The object of Part 1 of this paper is to prove the following theorems§.

THEOREM 1. Let k =A =1 and let
Lfm¢mﬁ (3)

be summable (C, A) to sum A.

t Part 1 received 20 August, 1952; read 20 November, 1952; revised with Part 2

added 28 September, 1953.
1 Where no interval of absolute continuity is specified it is to be understood that the

property pertains to every finite interval in [1, ).
§ For results of greater gemerality involving the particular function ¢(z) = z°, see

Borwein (1).
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(i) Ift d e —Qp%, then, for every value of s,
| tho—s 0 @

18 swmmable (C, A—1) to sum s¢(1)—A.

(i) If e Qyx—Q.*, the above conclusion is true only when s = s,, where
8y 18 the sum (C, A) of j f@)de; for other values of s, (4) is strictly divergent.
1
(iii) If ¢ e L= L2, then for every value of s, (4) is summable (C, A—1)
to sum (sy—8) p(c0)+sh(1)—A ; s, being asin (ii)].

In Part 2 we shall investigate the necessity of the conditions on ¢ ;
more explicitly, we shall show that if ¢(x) is a real function which satisfies
either (1) (i) or (2) (i) and has an absolutely continuous «-th derivative, and
if, for every A in the range 1, 2, ..., «, the summability (C, A) of (3) implies
the summability (C, A—1), for some value of s, of (4), then ¢e QL Q,~

For r=1 or 2 let Q¥ be a class of functions defined as follows:
¢* g Q% if and only if ¢%(x) is absolutely continuous and there is a ¢ in Q. *
and a constant ¢ == 1 such that ¢*(x) = ¢(x) for all z >c.

We can replace Q. by Q** in Theorem 1 to obtain a slight and easily
verified generalization.

Hardy and Littlewood have proved§ that Theorem 1(ii) holds for integral
A when ¢(z) is an absolutely continuous L-function|| satisfying, for some
A >0, the relation 1 <¢ <2* [e.g. ¢(x)=2*{log (1+4=)}* where, either
e > 0 and B is real, or « =0, 8> 0]. It can readily be shown that such
a ¢isin QF<—QF Parts (i) and (iii) of Theorem 1 generalize the Hardy-
Littlewood result in a different way, for it may be shown{{ that if ¢(z) is
an absolutely continuous L-function then (i) ¢eQ¥F—QF when
2 <¢$<1 for some A>0 [eg. ¢(x) =2z "log(1+4x)® where, either
«>0 and B is real, or a=0, B<C0], (ii) ¢eQFAQF when =1
[e.g. $()=log (2—1/z)].

It is interesting to note in passing that when d¢(z) is a positive
unboundedly increasing function for # > 0 with an absolutely continuous

t It will appear later (Lemma 4) that “¢en;*—0," and “¢en—0,<" are
respectively equivalent to “ ¢ &0, and lim ¢(x) = 0” and “¢pe 0, and lim |¢(z)| =,
a—rx a—>w

¥ s°=x1E>n r(a+1)2z=* fiqa(z) and ¢(w) = lim ¢(x); these limits will be shown to
& T

exist under the appropriate hypotheses.
§ Hardy and Littlewood (7).
|| For properties of L-functions (or logarithmico exponential functions) see Hardy (5).
9 See for instance Hirst (9), Theorem 3.
Tt These properties follow from the result concerning the range 1< ¢ < #* and
Lemmas 5,
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«-th derivative, then a necessary and sufficient condition for every series
summable (R, A,, ) to also be summable (R, $(A,), «) is that ¢ Q<

3. We require the following lemmas.

LemMA 1. Ifk =1 and ¢ Q" then, forn=1,2, ...,k and x > 1,
@) [ ool a=0(g@))
(ii) & ¢™(z) = O{ $(@)]}.

The hypothesis ensures the convergence of j‘ $*+1)(¢) dt, and so there

&
is a finite constant €' such that, for x =1,

$O(z)— 0 = —j S0 (1) dt.
Consequently :
C = lim ¢®(z) = lim ko™ Sﬁ (—t)—1®(t) dt
1

T—> 0 T—>®0

= lim {x!z~*$(z)4-O(z1)}.

x—>o0

Sinece ¢ (x) is bounded in (1, o) and « > 0, it follows that C = 0, and hence
that

#9e) == gy

Therefore, for z > 1,
5 1| (1) | dt gj et dtj | §+D ()| ds
& ] t

o[ 0ot s
@ 0

= o) du <2 |4(@)],

K
and

| go@) | <o [ el ae < g de < M| e

Conclusions (i) and (ii) are thus true in the case » =«. Repetition
yields the full result.

LeMMA 2. Ifk =1 and ¢eQyF, then, forn=1,2, ...,k and x =1,
Q) | |4 at = 0( (@)1,
(i) 2 g™ (z) = O{ $(=)|}

t Kuttner (10), and Hirst (9).
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Conoclusion (i) is due to Kuttnerf. Conclusion (ii) follows from (i)
since, for n=1, 2, ...,k and =1,

g = " gt it [ o140 gm0,
1 1
Luevmma 3. If $eQ*wQyr, then a necessary and sufficient condition
that e NQy* is that there should be constants my, m such that

0 <my<|p(@)| <m
forall =1

This follows easily from the definitions of the classes concerned.
LevMa 4. (i) If $eQ— Q" then ¢(x)—>0 as z—>o0.
(ii) If peQy—Qy* then |d(x)| >0 as x—oo.

(iil) If de Q. Q> then $(z) tends to a finite, non-zero limit as &— 0.

Suppose that ¢eQ*. By Lemma 1 (i), j |#'(t)|dt < oo and so $(x)

tends to a finite limit as z—co. In view of Lemma 3, results (i) and (iii)
follow.

Suppose now that ¢eQ—Q*. In view of (2)(ii), we have, for all
2 >1 and some positive constant M,

@) <I$)+] 18Ot < () +H | $(2)]
Since Sj| ¢'(t)| dt increases and, by (2)(i) and Lemma 3, ¢(x) is unbounded
in (1, o), it follows that |$(2)| > as x—>c0.
Levuma 5. () If ey then e Qyn.
(i) If e Qy* them el

Let p be any integer such that 1 <p <x+1. By a particular case of
a theorem of Faa di Bruno on the differentiation of a function of a function }

- P ?_l,(s}(;) bry s
s =2 g i {fe

" where the a’s are constants and the b’s are non-negative integers such that

3 sh,,=p (r=12,..,49)

8=1

t Kuttner (10), Lemma 2.
1 Cf. Hirst (9), Lemma A,
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Further, if » > 2, we have, under either hypothesis by Lemmas 1 (ii)
and 2(ii), that

s PO S 1
108 =002 (s=1,2, .., p- 1,'t;1).

Now let s, be the largest value of s for which b, ,7 0. Since b, , <1,
we can immediately deduce that, for ¢t > 1,

12—1 @) (t) = O {E £, 1’[7!:;') O i} (5)

(i) Suppose now that $e Q—Q,«, and write, for ¢t > 1,

x)=| |# @]
Then, by Lemmas 1(i) and 4(i),
0<|g()] <x() < G[(1)]

for all £ > 1 and some constant G. Since, in addition, y(¢) is continuous
and non-increasing for ¢ =1, we can proceed as follows.
Let x> 1 and let N = N(x) be the positive integer for which

21y () < x(1) < 2 x(x).

Put z,==z, xy =1 and, when N > 2, choose x;, @, ..., Zy_4 such that,
forn=1,2, .. N—1,

Lp1 = L, ; 1
and x(z,) = 2" x(x).

Then, for r=1, 2, ..., ¢,

jts—l]qb (tldt\Gz -J ts“l](’ﬁ')(ﬂdt

P n=0 @y

o1 g &
> }aj 1| o0 (1) | dt

n=>0 {X Tptl
N-1 91—
<H2X(ﬂ—Ll)<Hz27n
n=0 {X( n=0 X(m)
<4H (=),

where, in virtue of Lemma 1(i), H is a constant independent of x and r.
Hence, by (5),

[[e1gm@) 0= oty

for x > 1, and so e Q"
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(ii) Suppose that e Qy*—*. Note that, in view of Lemma 3, ()
is unbounded in (1, c0), and write, for t > 1,

X0 =141+ |4 du.

Then, by (2) (i) and (2)(ii), there is a constant & such that, for ¢ > 1,
0<|p(0)| <x(6) < G|,

and so y(f) is positive, continuous, non-decreasing and, by Lemma 4 (ii),
unbounded for £ > 1.

Let 2 >1 and let {x,} be an increasing and unbounded sequence such
that xy=wx and, forn=1, 2, ...,

X(xn) = 2nx(x)'
Then, forie=1, 2, ...; 4,

o0 o (’"f)(t)[ ) j’zn-m " S5(3,.)(;5)
tsr—1 dt <G % ger—1 dt
jx |¢'(t)|2 n=0 JZy {X(t)}z
o 1 Zni1
<Gz J' 151 g (1) |
n=0 {X(xn)}z 1 i¢ (t)‘ ;
o 9l—n

<HE Xy g5 2
nO{X }2 ﬂUX(m)

<4H (@),

where, in view of Lemma 2(i), H is a constant independent of z and 7.
Hence, by (5), e )~

(iii) Suppose that & Q*~Q, . Then there are constants m,, m such
such that, for £ > 1, 0 <m,<<|¢(t)| <m. Hence, in view of (5) and
Lemma 2(i), both

_ﬁtf‘-ﬂ JP(t)|dt  and r 71| A0)(8) | di

are

0{ Eq: f,gs,‘_”(f,(sr)(t)jdt} = 0(1)= O{¢(x)|} in (1, o).

r=1
It follows that e Q,*~Q,< and the proof of the lemma is thus completed.

LevMa 6. If k=1 and ¢e Qi Q" then, for x =1, n=1, 2,
and r=0,1, ..., k—n,

(@/dey ) (@) ()} = O(a").

By Lemma 5, e Q,<wQ,~ and so, in view of Lemmas 1(ii) and 2(ii),
we have, for x >1,s=0, 1, ..., &,

() $(2) = O(2) and ¢9(x)(x) = O(z~).
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The result follows since

(d/dm)f{l!,(n)(x)sb(m)} = é}o ( ) PYtr=) () $©) ()

LemMA 7. Let p>0, p>—p—1, pi-9g>—1, and let g™(t) = O(1™)
in (1, o) forn =0, 1, ..., m, where m = p.
@) If f@) =

o(t?) (C, p) as t—cot, then
fB)g() = o(t**9) (C, p) as t—>oo
(i) If f(t) = O@®) (C, p) in (1, o), then
f@®)g(t) = 0@+9) (C, p)in (1, ).
Part (ii) is due to Bosanquet]; his proof is easily adapted to (i)

4. Proof of Theorem 1. Suppose that§ «>A>«—1
el

t)—j f(w) lu) du—A4,

and note that the first hypothesis of the theorem is equivalent to

v(f) =o(1) (C, A) as t—o0.

Write, for

(8)
We suppose to start with that ¢e Q;*w €, and that s is an arbitrary
constant. Then, for z =1,

[ tho—sp @ ar+sip@—40)

= row@—sw)a
=A@ HO—-1—$(e) |

and so

v(t) ' () dt, (7

[[no-sg#0a+a-s

~4(@) [ o0 ¥ O @+l {ap)—s)
= £ (—110,@) @) 4

+(_1~+1¢(x)5@(t)w+1> () dt+(@) {Ap(1)—s}  (8)

t Lee. fult) = o(tF++) as & — co.
i Bosanquet (3), Lemma 1.

See also Bosanquet (4), Theorem 2.
§ Becanse of Lemmag 1(i) and 2(i) this leads to no loss in generality.

INTEGRATION BY PARTS OF CESARO SUMMABLE INTEGRALS

283
It follows from (6) that, as #—o0
'Un(x) = O(wn) (0: )‘_n) (n =0,1, .., K_]-): (9)
() = 0(2%); (10)
whence, in view of Lemmas 6 and 7(i),
2‘. (—1)“7) (z) N () d(2) = 0(1) (C, A—1) a8 z—>c0. (11)
We now consider two cases

Case 1. Suppose that ¢e Qy —L*

Then, by Lemma 4(i),
é(x) >0 as x—0,
and, in view of Lemma 5(i)

s [ rlgen0]dt=00) in (1, 0);

and it is well known and easily demonstrated that these relations together
with (10) ensure that

(—1414(0) [[ 00020 a4 g () =5} = 0(1) 85 720, (12)

Part (i) of the theorem now follows from (8), (11) and (12

Case 2. Suppose that ¢e Q. Then, by Lemma 5(ii),

#(@) [ el a—00) in (1, ). (13)
Put so= A1)+ (174 " 0.0

(14)
the integral being convergent in view of (10) and (13)
We deduce from (10), (13) and (14) that
$) (0.0 POt (141 o) (A1)~ = o) [ (0900
=o(l) as z—>o0. (15)
It follows now from (8), (11) and (15) that
[[tho—sd# 0@t =sd)—4 (©,2-1) (16)

We show next that s, is the sum (C, A) of j f(t)dt. We have, forx =1,
[rwa={ o g0 o

— Ap() Fol) @)~ | vOF O

— AY()+ B (1o, (@) @)+ (— 1) j”m(t)wn(t)dt. (17)
n=0 1.
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Further, since i(x) = O(1) in (1, ), we have by Lemmas 1(ii) and 5(ii)
that, for n=0, 1, ..., «,

(@) = O(@") in (1, ©);

whence, in view of (9), (10) and Lemma 7(i),

I D=
=

(— )™, (x) ™ (x) = 0(1) (C, A) as x—»co. (18)

o

It follows from (14), (17) and (18) that J fl)ydi=s, (C, A).

1
In view now of parts (ii) and (iii) of Lemma 4, parts (ii) and (ii1) of the
theorem can be easily deduced from (16).

n

Parr 2.

5. In what follows we shall suppose that all functions are real, that
« 18 a positive integer and that ¢(x) has an absolutely continuous «-th
derivative, Our object now is to prove -

TasoreM 2. Let ¢(x) be such that, for every A in the range 1, 2, ..., k,
J {f(t)—s}¢' (£)dt 25 bounded (O, A—1) in (1, ), for some value of s,
il:

whenever 5 f@)p(t) dt is summable (C', A).
1

(i) If 0 < d(x) <<m, for all x =1 and some constant m, then ¢e ",
(i) If d(z) >m >0, for all x =1 and some constant m, then ¢e Ly,

We require additional lemmas.

6. We shall denote by 8,7 (p, ¢ non-negative integers) the class of
functions »(f) such that #@(t) is absolutely continuous and v,(t) = o(t#)
as t—>o0.

Lemmat 8. If

lim
>0

r o, (0)f (¢, 2 dt | < o0

1

and the integral is convergent} for all x =1 whenever ve S, (p, q fized),
and if, for each y > 1,

= TY
lim j 2| f(¢, z)|dt < oo, (19)
a0 J1

then lim j to| (¢, x)|dt < co. (20)
z—>w J1

t Cf. Hardy (6), chapter 3; and Hill (8).
Y
o Te L v,(t) f(¢, ) d¢ exists in the Lebesgue sense for all ¥ > 1 and tends to a finite

limit as y — .
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A. We shall prove first that, for x =1, a > 1,
5 2| (¢, )| dt < o0. (21)
@

Note that, for y > @ > 1, there is a function v(¢) in §,% such that v,(¢) = t*
fora <t <y, and so, forz =1,

fmf(t, #[db oo,

Assume that for v =z, =1, a = ay > 1, (21) is false. Then there is an
increasing unbounded sequence {y,} such that y, = @, and

0 > r”] 2| f(t, %)| dt > n+4. (22)
yn

We can now find} a step function g(¢), with a finite number of steps in
each interval [y,, ¥,41], such that

Yn+tl
[ lg)—11t, 20l de <1 23)
Un
It follows from (22) and (23) that
Yn41
S | g(t)| dt > n+3. (24)
v

n

Let Y, be the union of a finite number of non-intersecting closed
intervals lying in the interior of (y,, ¥,.1), but not containing any points
at which g(¢) is discontinuous, such that

j 2| g(t)|de >rn+ltﬂg(t) |di—1. (25)
Y ¥ "

" ”

Clearly there is a funection »(¢) in S,? such that
vy(t) =n"1t" sgng(f) (tel,) (26)
and (o) <w7H (g SE<Ynid)- (27)

It follows from (24), (25), (26) and (27) that

r”“%(t)g(t) di T L, (28)

n 3
and then from (23), (27) and (28) that

| o, e 1.

Yn

t Cf. Kuttner (10), 109.
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(e}

Hence, in contradiction to one of the hypotheses, J v, (£) f(t, xo)dt is not
1

convergent, and so (21) must be true.

B. Assume now that (20) is false. Then we can define two increasing
unbounded sequences {z,}, {,} as followst.

Let x, =y, =1 and suppose that xy, =y, ..., 2,1, Y1, Y ..., Y, have
been determined. Let

. (¥Un
8n=1imj | f(t, )| de,
1

X—rw

and note that, by (19), 8, is finite. Choose z, so that z, > x, ,+1,
Ve
[“e1r mlde<s, 41 BNCY
1

] j |f(t, ,)|dt > n24-2n-+ (n--1)5, 6.
1
Since (21) is true, we can now choose ¥, so that ., > y,+1 and

j 2| f(t, )| dt < 1. (30)
Ynal
It follows that

rn“tp‘f(t, x,)| dt > n?4-2n+nd, 4.
Un

Proceeding now as in A we can find a function »(f) in 8,2 such that

|’f’p(t)] S <P (Y, <E<Ypaa) (31)

At r"“ vy ()t T,)dt > met-24-5,. (32)

Yn

We deduce from (29), (30), (31) and (32) that

4]

L vp(8) f(¢, ,) dt > m;

and, since this is inconsistent with the main hypothesis, the lemma is
proved.
Lemma 9. Ifk=A=1, ¢ey and v(t) = O(1) (C, A) én (1, ), then
() Yv(t)(,b'(t)dt:c)(l) (C, A—1) in (1, o).
1

In view of Lemma 7(ii) the argument used in establishing part (i) of
Theorem 1 is easily adapted to the present requirements.

+ Of. Hardy (6), 45.
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Lemma 10. If, for some positive constant m and all 2 > 1,

(1) L [¢'(B)|dt <mé(x), (i) x| (x)| < mp(),
and if, for some fixed p > 0,
(iii) é(x) rv(t)a,b’(t)dt: o) (C, u) in (1, ©) whenever veS.0, then
T
pe -
Suppose, without loss in generality, that u >«. Note that, in virtue of

hypothesis (i), ¢(o0) exists and 0<Cé(0)<oo; and write, for = =1,

x@) = 14'0] s+ $(c0).

Then, for x 2> 1, x(«) is non-increasing and there is a positive constant G
sueh that
0 < ¢z} < x(2) < Gd(x).
A further consequence of hypothesis (i) is, by Le mma 5(i), that s & (,°.
Assume now that e QF-1 where p is an inleger such that 1 < p <«.
Let ve 8,0 Then, by hypothesis (iii), we obtain after p integrations by
parts

7 [ e—wrrgan [oyp @

z

o j o(t) ' (8) dt j (@—u)*~ () dus
1 t

= [Tty ooy L (r— )1 p(w) da

~E22 [ atpto, 00

S

-+ % é s Sw (x—t)y—s v, (t) ,’b(p-{-l—r) (®) qg(r—s)(t) dt
= 1
= 0(1) in (1, o),

where the ¢’s are constants (the double sum does not occur when p = 1).
In view of hypothesis (i) and the assumption, we have, for > 1,

2 ), =00, U0 $0)d
.

i

. (x—t) 1w, () PP (1) dt— % jj &' (t)dt F (x—u)*tv, (u) $P(u)du
= 0{p@ [ty +0{2; [ 20 at [ @—up-rum |y au]

= 0)+0{ ["$dt [ w11 yo) au} = o)
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Further, when p >=2, it follows from the assumption, by Lemmas
1(ii), 2(ii) and 5(ii), that, for r=2,3, ..., p,8=1,2, ..., r, £ =1,
Yo =) $r9(t) = O(t=->-1).
Hence the above double sum is

ol% = %ﬁ(m—t)“‘*#‘—ldt}:0(l) o

lr—g s=1

Consequently

1
;tj v, (£) Yot dtﬁ (@—u)—1 $(u)du = O(1) in (1, o).
Since ¢(u) is positive and bounded, we have for y > 1,

lim ﬂ £ | o) z)\dtj w—u)1 $(w) du < oo.
1t follows, by Lemma 8, that there is a positive constant H such that,
for = 1,

H >(4i) 5 o] Yo (1) dt E’”(étx_u)ﬂqs(u)du

( 1) 5 (dc—u)*1d u)duj tpllﬁ(p+1)(t

1 2@ )
= Sigd L x(u) du Sltp | a,!x(f’+1).(t)|dt

v
24

x(%) 51 | o) | .

Now, for z =1,

x\®) ) _ » o k8 |3 ¢’ ()
O<log{ (ac)} log x () —log x(2z) == xx(g)_x (&) \{5\4)(5){,

where x < ¢ < 2x; and so, in view of hypothesis (ii),

x(2%) = e x(x) = e mP(x).
Consequently

() jjtplzpwfn(tﬂdt:()(l) i (L o)

and, since $eQy0, it follows that e Q. Hence, by induction and
Lemma 5(ii), e ",

Lemmat 11, If 0<$(z)<<m, for all x=1 and some constant m,
and if ¢(x) j v(t) ' () dt is bounded in (1, o) whenever ve 8,° then e 2.

4 Cf. Bosanquet (2), 279, L.
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We shall first prove thatf
xd(x) Y (2) = 0(1) in (1, ). (33)

Assume (33) fo be false. We shall define a strictly increasing unbounded

sequence {x,} as follows.
Let @, = 1, suppose &g, &, -+ Tan—2

2yn—9+1
%ZE £\’ ()] dt.

1

46 have been determined and pub

Choose ,, 8o that 2, > y,_p+1 and
ZTan ¢(x2n) I 'F (xzn) I = n(%-]—mcn) >

and then choose &y, ; 50 that Zs, > %31 Ly, 1 and

22n
s |ty @la<n
Tan~—1
Now it is clear that there is & function v(f) in 8;° such that

mn t - ase
vy (@) =% @S5 for @y, q<t<tytl =12 )

and v, (t) = 0 for all other values of i.
Tt follows that

dt‘ > 0y (@gn) $(@20) | (@2n) |

¢ (@5n) j’:’v(a) ¥ (0)
() 5' @y Ol d—dn [ @
i Z2an—1

> n-+me, —me,—1=n— 1,

This contradicts the main hypothesis and so (33) must be true.
Note that, for ¥ > 1,
= v
fim ¢(x) S ¥/ (0)|dt <o, Tm ¢(x)5 g ()] dt < oo,
Z—r®0 E—ro o ¢

Since 8,0 8, it follows from the main hypothesis, by Lemma 8, that

3@ [[1w 0]de=00) in (1, )
' Further, in virtue of (33),

qﬂ(w)j on(0) 9 (1) dt = v,(%) $(@) ' (@) — (%) Yiv(t) P’ (t) dt

e

R e e

t Of. Kuttner (10), 110.
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is bounded in (1, o) whenever ve8,°. Hence, by Lemma 8,

x)Eﬂa,b"(mdt:oa) in (1, o).

In view of Lemma 5(ii), the result follows.
Levma 12. If 0 < $(x) < m, for all & =1 and some constant m, and if
r fi®) ' (1) dt is (i) bounded in (1, o) whenever 5 F() (b)) dt 4s summable
L
(C. 1), (ii) bounded (C, ) in (1, 00) for some fived > 0, whenever j J@) () dt
is summable (O, k), then de Q;*.

Referring back to (7) we note that, for z > 1,
8@ [ ooy 0= 44 41— oy 0

where v(t)—j fu)d(u)du—A. : (34)

Given an absolutely continuous () we can find f(u) and 4 to satisfy
(34). Since ¢(x) is bounded, we can deduce that, for z > 1,

sb(m)j w(t) P (1) dt

is (i)’ bounded whenever v 8,°, (ii)’ bounded (C, 1) whenever ve 8,9,
It follows from (i)', by Lemma 11, that ¢&Q,'. Hence, in view of
Lemma 1 and (ii)’, ¢ satisfies the hypotheses of Lemma 10 and so de -

7. Part (i) of Theorem 2 is included in Lemma 12 and part (ii) can be
established as follows.

Proof of Theorem 2 (ii).

A.  Suppose that ve S,° and put f(u) = o' (u)(u) (v >1), A = —u(1).
Then

v(t):zﬁf(u)q!»(u)du—A:o(l) 5 s.a0;

Referring now to (7) we note that, by hypothesis, there is a constant s such
that

[, (o= Oa+4—s80) = s {40 —s—[ vty 01
—0(1) in (1, o).

Since i(x) is bounded, it follows that

rv(t)a,b’(t)dt=0(l) in (1, o),
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and hence, by Lemma 8, that

ST|¢’(t)|dt<oo.

Consequently j v(t) ' (t) dt is convergent. If ¢(x) is unbounded the
1

value of this integral is necessarily Ay (1)—s and thus

qs(m)j w(8) i (1) dt = 0(1) in (1, o).
If ¢(x) is bounded this result follows immediately from the convergence of
J v(t)'(f)dt. Hence, by Lemma 8,
1
#@) | 1#®2t=0(1) in (1, o),
and so e Q0.

B. Assume now that
PeQp-, (35)

where P 8 an integer such that 1 <<p <«k. Let g be any integer in the range
1, 2, ..., p and suppose that J g(t) (¢} dt is summable (C, ¢). Put
1

H=g@O @} @¢=1)
Then j f(#)$(2)di is summable (C, ¢) and so, by hypothesis, there is an
1
indefinite integral F(¢) of f(¢) such that

h(a:):rF(t)qS’(t)dtzO(l) (C,q—1) in (1, o). (36)
Further, for x =1,

[[nowoa={voal fwgwpda

j ) qb(u)}zduj () dt
Slf (u) b (u) du+(x 5 w){p(w)2du
S

£() $(w) dut F(2) $le)—ch()

1

—24(@) [ W () $(0)

=c{¢(1)—¢(x)}—k(m)+2¢(x)j b d du, (1)
where ¢ = F(1) {¢(1)}>



