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1. Introduction

Lot Q= {g,,} (B,v=0,1,2,...) be a (summability) matrix and let {s,} be a
sequence. Let

(1) Gh = %’; gﬂ,vsy'

The sequence {s,} is said to be Q-convergent to the value s if o, existsforin =10,1,2,. ..
and tends to s.

In this case we write s,—s(Q) and call s the Q-limit of {s,}. We denote the set
of all Q-convergent sequences by ¢,.

The symbol P will be reserved for matrices {Pn,} With

DU =20, 1,2 ..
Necessary and sufficient conditions for every null sequence to be P-convergent to zero are:
(2) sup X' p,,, < o
n=0 y=0
3) lim p,, =0 s e o
h—co
The matrix P is regular if and only if, in addition to (2) and (3), it satisfies
(4) linr .3 pos =1
n>00r=0

Throughout this paper 1 is a positive number. As in [2] we define the strong sum-
mability method [P, Q], as follows. We write s, s[ P, 0], if

(5) V= %pn,vlar—_s|l

exists for n = 0,1,2, ... and tends to zero. We call s the [P, Q)-limit of {s,} and say
that the sequence is [P, Q]-convergent to s. We denote the set of all sequences which
are [ P, Q],-convergent by [cp o]

We denote the set of all convergent sequences by ¢, the identity matrix by I, and
write [cp], instead of [¢p /1;, and [P]; instead of [P, L5
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If ¥ and W are summability methods of either of the above two types, we shall
say that W includes V, and use the notation V' = W, if any sequence V-convergent to s
is necessarily W-convergent to s. If W includes V but V does not include W, the in-
clusion ¥V = W is said to be strict. If both V= W and W=V, we say that V and W are
equivalent.

The sequence {s,} is said to be Q-bounded if sup | o, | < oo, where o, is defined
n=0

by (1). The set of all Q-bounded sequences is denoted by mg.
The sequence {s,} is said to be [P, Q],-bounded if there is a number M such that

3 Py [0y * = JE

y=0

for n=0,1,2, ....

We denote the set of all [P, Q],-bounded sequences by [mp,];, and we write [mp],
instead of [mp ;];-

2. Simple inclusion theorems

We state now some simple results, of which all but parts (i) and (ii) of Theorem 1
are proved in [2]. The proof of part (iii) of Theorem 1 can easily be adapted to establish
parts (i) and (ii).

Theorem 1. If P satisfies (2), and 2 > pu >0, then :

(i) [epoli < [mpolis
(11) [(mpgli<[mpglis
(111) ' [P, @, =[P, O],

In particular the conclusions hold if 2 >u >0 and P is regular.
Theorem 2. (i) If P satisfies (2) and (3), then

Q~[P, QL  for 2 >0,
(i) If P is regular (i. e. it satisfies (2), (3) and (4)), then
[P, 0),=PQ for 4= 1.

The summability method PQ referred to above, is defined by ‘{s,} is PQ-convergent
to s if {o,} as given by (1), is P-convergent to s.’ j
Both Theorem 2 (i) and its converse are established in [4] for the case Q = 1.

It is our principal purpose to investigate general conditions on the matrix P under
which the inclusion relations in Theorems 1 and 2 are strict. In the next section we give
some basic properties of strong summability and strong boundedness which will be useful
In our investigation.

3. Basic properties

Theorem 3. Let P satisfy (3) and

(6) lim sup zo‘opw >0
- n->c0 p=0

(i) If s, s[P],, then s is a limit point of {s,}.
(1) If s, € [mp),, then {s,} has a limit point.
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Proof. (i) Suppose that s is not a limit point of {s,}. Then there is a positive integer N
and a posmve numher 8 such that | s, — s |* = 8 for » = N. Thus by (3) and (6) we have

lim sup 3 p,,,|5,—s = olimsup = p,,, >0,

n—>0c v=0 n—>00 »=0

and (i) follows.
(i) Suppose that {s,} has no limit point. Then given a positive number K, there is
a positive integer N such that |s, |*= K for v = V. As above we have

lim sup me[ s, * = K lim sup ):‘pM>O.

n—+ceo  #=0 n->c0 v=0

Part (ii) follows.
When (6) does not hold, we must have

(7) lim X p,,=0;

n-—+>oo =0
and in this case we have the following theorem.

Theorem 4. Let P satisfy (3) and (7), and let {£,} be any unbounded sequence of
positive numbers. Then there is an index sequence™) {q,,} such that the sequence {s,}, defined by

(8) Sv=r='&m for Qm.fv <q'm+11
is [ P);-convergent to zero.
Proof. Since p,, = 0, it follows from (3) and (7) that the series 20 Py, 18 UNi-

formly convergent. Thus we can choose {g,,} so that ¢, = 0, ¢,,,1 > g, form = 045 25w «
and

oo —m
2 Py < g =02 s
Y=qm . Em
Now for {s,} satisfying (8), we have
© © fpyt1—1 © Tp41—1
Epu,lsl= 3 3 pylsl= &3 Pu= 2 B
v=0 m=0 v=g¢p, m= Y=m

and 0 < &0, ,. = 27" for all n and m. The latter series is thus uniformly convergent,
and since Q, ,, — 0 as n— oo for each m, our result follows.

4, Some theorems on striét inclusion
Theorem 5. Let P satisfy (3)
i) If 0 < L = o0 and

(9) lim infmax p, , = 0,

v>oo n=0
then there is a sequence {s,} of non-negative numbers, with lim sup s, = L, which is P-con-
vergent to zero.
(ii) If there is a sequence {s,} of non-negative numbers, with lim sup s, =0, which
is P-convergent to zero, then (9) holds.

*) A strictly increasing sequence of non-negative integers.
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Proof. (1) By (9), there is an index sequence {»,} such that
U = Iggacpn,%» 0 as k— oo,

Let {A,} be any sequence of positive numbers such that 1, - L and w4, -> 0. Choose an
index sequence {/;} such that

il‘dg

My, < S0

@

Now define {s,} by setting
00 A, if »=uw, =01 2 0,
*7 10  otherwise.

Then lim sup s, = L and, for any positive integer m,

m—1 o0

5 nv v—-Epnvk k,gl Z,U/;‘;Ak

b i

Hence f, is finite for n = 0, 1,2, ... and, by (3),
0 < limsupit, = 3y A= 9, 5ay.
i=m "

Since y,— 0, it follows that ¢, — 0, and hence that {s,} is P-convergent to zero.

(i1) Suppose {s,} is a sequence of non-negative numbers with lim sup s, = 2y >0
and such that

o0
by = 2 PpyS, <oco forn=014,2,....
=0

There is an index sequence {v;} such that
Sy >V for & =0,1,2, ...

Let {n;} be a sequence of integers such that p, , = maxp,, . Suppose now that (9)
wz0 =

does not hold, so that there is a positive number 8 such that Pry, = 0 for k sufficiently
large. Then -

oo > tﬂ = vé‘o_pﬂ,v'g:; ; Vié‘;pn,ui ; })pn,vk
and so for sufficiently large £,
by = VPnrg = i

Since 2,‘ Pn,, converges, we have p,, >0 as i—>oco. Thus the sequence {r;} cannot be
&

bounded, for if it were, we would have p, , —0 as k- co. Consequently ¢, does not
tend to zero, i.e. {s,} is not P- convergent to zero.

Corollary 1. Let P satisfy (3). Then (9) is necessary and sufficient for there to be a
non-convergent sequence which ts [P],1 convergent to zero.

Corollary 2, Let P satisfy (3), and suppose that Q is a matrix such that for every
sequence {o,} there is a sequence {s,} for which (1) holds. Then (9) is a necessary and sufficient
condition for there to be a sequence which is not Q-convergent, but which is [P, Q],-conver-
gent o zero.

Journal fir Mathematik. Band 267 “i 22



170 Borwein and Cass, Strict inclusion belween methods of summabilily

The next theorem follows eagily from Theorem 5.

Theorem 6. Let P satisfy (3). Then (9) is necessary and sufficient for there to be a
divergent sequence of zeros and ones which is P-convergent io zero.

It is interesting to compare Theorem 6 with the following theorem established
by Agnew [1].

Theorem (Agnew). If P satisfies (2) and

(10) lim max p, , =0,

n->co ».=20
then there is at least one divergent sequence of zeros and ones, which is P-convergent.
The relation between our conditions (3) and (9) and Agnew’s conditions (2) and
(10) is clarified by the following scholium, the proof of which is elementary.

Scholium. The following two sels of conditions on the matriz P are equivalent:

(i) limp,,=0,n=0,1,2,... and lim max p,, , = 0.
(i1) limp ,=0,v=0,1,2,... and limmaxp,,=0.
n-»0co y—>o0 n=0
Clearly condition (2) implies thatlim p,, = 0 for n =0,1,2, .... Thus by com-

bining Theorem 6 with the scholium we can strengthen Agnew’s theorem by replacing
condition (2) in the hypothesis by the weaker condition:

limp,,=0forn=20,1,2,....

Another consequence of Theorem 5 is the following ‘Mazur-Orlicz type theorem’
for strong summability.

Theorem 7. Let P satisfy (3). If only bounded sequences are [ Pl,-convergent, then
only convergent sequences are [ Pl,-convergent.
Proof. By Theorem 5(i) with L = oo we find that lim inf max p,, > 0. Thus 1if

=] y—+o0 n=0
2 Py ls,—s| * is finite for n = 0,1, 2, ... and tends to zero as n tends to infinity,
v=0
it follows from Theorem 5 (ii) that lim sup |s,— s | * = 0, so that s, - s as required.
The purpose of Theorem & is to obtain conditions under which the inclusion rela-
tions in Theorem 1 (i) and (iil) are strict. To facilitate discussion we introduce the fol-
lowing definitions.
" The matrix P is called an S-matriz if it satisfies (3), and if thereis an index sequence
{»,} such that
(11) pp = MAX D, =0 for b =10,d2; v
and
(12) lim g, = 0.
The matrix P is called an S*-matriz if it satisfies (3), (11) and (12}, and if there is
an unbounded sequence of non-negative integers {n,} such that g, = p,, , fork=0,1,2,.. ..
Let P be given. For each non-negative integer &, let P® = {p{f)} be the matrix
whose elements satisfy
P =B, TOF Tome=i0 12 oo
Thus P® is the matrix obtained from P by deleting the first & rows.

It is elementary to show that P is an S*-matrix if and only if P is an §-matrix
for every non-negative integer £. Clearly an §*-matrix is an S-matrix; and an S-matrix P

Borwein and Cass, Strict inclusion between methods of summability 171

satisfies (Y), a condition appearing in Theorem 5 and Corollary 1. A matrix P, having no
column consisting entirely of zeros, and satisfying (3) is an S-matrix; if it is also trian-
gular, then it is an S*-matrix. The set of S*-matrices is thus reasonably large.

Theorem 8. Let P be an S-matriz. Then, for any « > 1, there is a sequence {s,} of
non-negative numbers which is P-convergent to zero, whereas

(13) sup T, = oo

n=0

where
=3 DPnySy-
r=0
If P is an S*-matriz, then the conclusion can be strengthened by the replacement of (13) by
(14) lim sup 7, = co.
Proof. Suppose that P is an S-matrix, and let u, and {»,} be as set out in the de-

finition of S-matrix. Define 4, = u;? where 1/x < f < 1. Then 1,—+ oo, A,u, = puz * >0

and 25y, = py~* > oo. Defining an index sequence {k;} and a sequence {s,} as in the

proof of Theorem 5 (i), we see that
by = 2 Pn»S,
y=0
ig finite for n = 0,1, 2, ... and tends to zero as n tends to infinity. On the other hand,
Ty = 2 PnpSy = Pum A, for i=0,1,2,....
v=0 T

In particular, if n, is an integer such that p, , = u;, then

Ty, = Ay, > o0 as i oo,
Hence (13) holds. If n,— co, then (14) holds.

Suppose finally that {n;} is unbounded but not properly divergent. Then there is
a subsequence {n.} of {n,} and a corresponding subsequence {»;} of {»,} such that nj;— oo
and

0 < = max -0 as k->oo
Puiyy, = WAX Py 1 s koo,

Hence, by what has been proved above, there is a sequence {s,} of non-negative numbers,
which is P-convergent to zero, and for which (14) holds.

Corollary 3. If P is an S-matriz, and 2 > u >0, then there is a sequence {s,} which
is [P],-convergent to zero, but which is not [ P]-bounded.

Corollary 4. Let P be an S-matriz, and suppose that Q is a matrix such that for every
sequence {o,} there is a sequence {s,} for which (1) holds. If 2 > p >0, then there is a sequence
{s,} which is [P, Q] -convergent but which is not [P, Q],-bounded.

Corollary 5. If P is an S*-matriz and . > u >0, then there is a sequence {s,} which,
for every non-negative integer k, is [ P™] -convergent to zero, but is not [ P*],-bounded.

5. Properties of [cp];.

Theorem 9, Let P satisfy (3) and (8). If [cp), contains a divergent sequence, then it
contains both bounded and unbounded divergent sequences.
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Proof. Using Theorem 7 we find that [cp], contains an unbounded sequence {s,}
of non-negative numbers which is [P],-convergent to zero. Define a sequence {s;} by
setting s;= min {1, s,}. Then {s;} is bounded, is [ P],-convergent to zero and, by Theo-
rem 3 (i), is divergent.

Our next theorem is concerned with the inclusions

c<[eply<ep forall 4=1,

which Theorem 2 shows to hold when P satisfies (2) and (3), and in particular when P
is regular,

Theorem 10. There are regular matrices P for which any one of the following state-
ments holds for evcery A = 1;

(1) ¢ < [epli = p;

(i) ¢ = [cpli £ Cp;

(iii) ¢ s [cpl, = ¢p.
Proof ) Let P be the matrix associated with Cesaro summability of order 1.
Then P satlsfles (3) and (9), and so Corollary 1 shows that ¢ == [¢p],. Also P satisfies (6),
and the sequence {s,} given by s,, =1 and s,,,, =0 (n=0,1,2, ...) is P-convergent

to%. Thus by Theorem 3 (i), we see that [cp], & ¢p.

(ii) Let P be a regular matrix for which ¢, contains an unbounded sequence, but
1 2

?1 Pon1 = _3_ for
n=1,23,... and p,, = 0 otherwise). Thus ¢ = ¢p; and Theorem 9 shows that [cp],
contains no dwergent sequences, so that ¢ = [¢z],.

(i) Let P be the matrix such that for every sequence {s,}

no bounded divergent sequence (for example take p,, =1, p,, =

=X Pust; =g lor n=071,2; . .0
=0

Then P is regular, ¢ = c¢p and [¢p], = ¢p.
For the purpose of the next theorem we recall the definition of section-boundedness.
A matrix P is said to be section-bounded if for every sequence {s,} € cp, we have

<< o0,

m
) pﬂ,u S,

y=0

sup
T, m

Theorem 11. If P satisfies (2) but is not section-bounded, then for every A =1, the
set cp — [mp], (and a fortiori the set cp, — [cp],) s not empty.

Proof Since P is not section-bounded, there is a sequence {s,}€e¢, for which

sup z‘ o ﬂ‘_ oo. This sequence cannot belong to [mp],, for if it did, by Theorem

nym | ¥=0
1 (i11), we would have

sup ZanIS E—M<OO

n=0 *=0
and hence

sup
n, m

< M.

‘2 pﬂ.,v ¥

=0 |
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Theorem 12. Let the matriz P be regular and triangular. If

(15) pn,u;pﬂ+1,v fOl" ng?"! 1":07 11 2? £ wmcy
(16) Pun 20,
n n+1 .
(17) 2Dy éZDP,HLv forn—0,1.2: .2
v=0 Y=

1
then there is a divergent sequence of zeros and ones which is P-convergent toi but ts not
[ P),-convergent for any A = 1. ;
Proof. We use the notation

e Zﬂpn,vsv for'n:o,ﬂ-,g,....
»=0

If0<s <1forv=0,1,2, ... then, by (15) and {17) we hayg
(18) Uy y— Punll —8,) = 0, S 0, + Panfs foram =1, 2; .. «:
We now define the sequence {s,} inductively by setting s, =1, and for » >0 setting

§o=dat g = ; and 5, =01fn,_, = % As a consequence of the regularity of P, we

find that {s,} is divergent. .
Let ¢ > 0. Choose an integer N such that p, , < & for all n = N. Suppose

1 1
(19) §—£<un_l<7+s

% 1 1 ; ;
holds for some integer n > N. Then either— < u, <§+ e, in which case s, = 0,

2
and so by (18)

1
7—£<uﬂ_1fpnn£u oty 1<~2—+8;

in which case s, = 1, and so again by (18)

1 <1
0r—2—~e<uﬂ1 7

1
—ém—s L Ui o= Uy <ung1—!—pm<§+e.

1
Thus (19) holds with n — 1 replaced by n. Since , — u,_,—~ 0 by (18)and u, = 5 Tl
for infinitely many n, it follows that there is an integer n, > NN for which (19) holds with
22 ;
n = n,. Thus by induction (19) holds for all n = n, and so Uy sl €. {s,} is P-conver-

But by Theorem 2(ii) and Theorem 3, {s,} cannot be [ P],-convergent for any

1
gent to 5
A=A

We now give some examples of matrices which satisfy the hypotheses of Theorem 12x
Let {p,} be a sequence of positive numbers, and let P, = :S,;pﬂ.
(i) Let P be given by

Py

Puy = Pﬂ
LO for n > .

for v = n

Then P is the matrix associated with the ‘weighted mean’ method (N, p,) (see [3]). If

P,— oo and ﬁ;” 0, then P satisfies the hypotheses of Theorem 12, and P is also section-
bounded. 2
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(i1) Let P be given by

%'):1'- forv<n

n

Pny =1 0  for» >n.
Then P is the matrix associated with the Norlund summability method (V, p,) (see [3]).

It p};‘ -0, and if {p,} is a monotonic non-increasing sequence, then P satisfies the hypo-

n
theses of Theorem 12. Some of these matrices are section-bounded.
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