Journal für die reine und angewandte Mathematik

Herausgegeben von Helmut Hasse und Hans Rohrbach

W

Sonderdruck aus Band 267, Seite 166 bis 174

Verlag Walter de Gruyter · Berlin · New York 1974

Strict inclusion between strong and ordinary methods of summability

By D. Borwein and F. P. Cass at London, Ontario

167

Strict inclusion between strong and ordinary methods of summability

By D. Borwein and F. P. Cass at London, Ontario

1. Introduction

Let $Q=\{q_{n,\nu}\}$ $(n,\nu=0,1,2,\ldots)$ be a (summability) matrix and let $\{s_{\nu}\}$ be a sequence. Let

(1)
$$\sigma_n = \sum_{\nu=0}^{\infty} q_{n,\nu} S_{\nu}.$$

The sequence $\{s_n\}$ is said to be *Q-convergent* to the value s if σ_n exists for $n=0,1,2,\ldots$ and tends to s.

In this case we write $s_n \to s(Q)$ and call s the Q-limit of $\{s_v\}$. We denote the set of all Q-convergent sequences by c_Q .

The symbol P will be reserved for matrices $\{p_{n,r}\}$ with

$$p_{n,\nu} \ge 0$$
 $(n, \nu = 0, 1, 2, \ldots).$

Necessary and sufficient conditions for every null sequence to be P-convergent to zero are:

$$\sup_{n\geq 0} \sum_{\nu=0}^{\infty} p_{n,\nu} < \infty,$$

(3)
$$\lim_{n \to \infty} p_{n,\nu} = 0 \quad \text{for } \nu = 0, 1, 2, \dots$$

The matrix P is regular if and only if, in addition to (2) and (3), it satisfies

$$\lim_{n\to\infty}\sum_{\nu=0}^{\infty}p_{n,\nu}=1.$$

Throughout this paper λ is a positive number. As in [2] we define the strong summability method $[P, Q]_{\lambda}$ as follows. We write $s_n \to s[P, Q]_{\lambda}$ if

(5)
$$\tau_n = \sum_{v=0}^{\infty} p_{n,v} \mid \sigma_v - s \mid^{\lambda}$$

exists for $n = 0, 1, 2, \ldots$ and tends to zero. We call s the $[P, Q]_{\lambda}$ -limit of $\{s_{\nu}\}$ and say that the sequence is $[P, Q]_{\lambda}$ -convergent to s. We denote the set of all sequences which are $[P, Q]_{\lambda}$ -convergent by $[c_{P,Q}]_{\lambda}$.

We denote the set of all convergent sequences by c, the identity matrix by I, and write $[c_P]_{\lambda}$ instead of $[c_{P,I}]_{\lambda}$, and $[P]_{\lambda}$ instead of $[P, I]_{\lambda}$.

If V and W are summability methods of either of the above two types, we shall say that W includes V, and use the notation $V \to W$, if any sequence V-convergent to s is necessarily W-convergent to s. If W includes V but V does not include W, the inclusion $V \to W$ is said to be strict. If both $V \to W$ and $W \to V$, we say that V and W are equivalent.

The sequence $\{s_n\}$ is said to be *Q-bounded* if $\sup_{n\geq 0} |\sigma_n| < \infty$, where σ_n is defined by (1). The set of all *Q*-bounded sequences is denoted by m_Q .

The sequence $\{s_n\}$ is said to be $[P, Q]_{\lambda}$ -bounded if there is a number M such that

$$\sum_{v=0}^{\infty} p_{n,v} \mid \sigma_v \mid^{\lambda} < M \quad \text{for } n = 0, 1, 2, \dots$$

We denote the set of all $[P, Q]_{\lambda}$ -bounded sequences by $[m_{P,Q}]_{\lambda}$, and we write $[m_P]_{\lambda}$ instead of $[m_{P,I}]_{\lambda}$.

2. Simple inclusion theorems

We state now some simple results, of which all but parts (i) and (ii) of Theorem 1 are proved in [2]. The proof of part (iii) of Theorem 1 can easily be adapted to establish parts (i) and (ii).

Theorem 1. If P satisfies (2), and $\lambda > \mu > 0$, then

$$[c_{P,Q}]_{\lambda} < [m_{P,Q}]_{\lambda};$$

(ii)
$$[m_{P,Q}]_{\lambda} < [m_{P,Q}]_{\mu};$$

(iii)
$$[P, Q]_{\lambda} \Rightarrow [P, Q]_{\mu}.$$

In particular the conclusions hold if $\lambda > \mu > 0$ and P is regular.

Theorem 2. (i) If P satisfies (2) and (3), then

$$Q \Rightarrow [P, Q]_{\lambda}$$
 for $\lambda > 0$.

(ii) If P is regular (i. e. it satisfies (2), (3) and (4)), then

$$[P,Q]_{\lambda} \Rightarrow PQ$$
 for $\lambda \geq 1$.

The summability method PQ referred to above, is defined by $\{s_n\}$ is PQ-convergent to s if $\{\sigma_n\}$ as given by (1), is P-convergent to s.

Both Theorem 2(i) and its converse are established in [4] for the case Q = I.

It is our principal purpose to investigate general conditions on the matrix P under which the inclusion relations in Theorems 1 and 2 are strict. In the next section we give some basic properties of strong summability and strong boundedness which will be useful in our investigation.

3. Basic properties

Theorem 3. Let P satisfy (3) and

(6)
$$\limsup_{n\to\infty} \sum_{\nu=0}^{\infty} p_{n,\nu} > 0.$$

- (i) If $s_n \to s[P]_{\lambda}$, then s is a limit point of $\{s_n\}$.
- (ii) If $s_n \in [m_P]_{\lambda}$, then $\{s_n\}$ has a limit point.

Borwein and Cass, Strict inclusion between methods of summability

169

Proof. (i) Suppose that s is not a limit point of $\{s_v\}$. Then there is a positive integer N and a positive number δ such that $|s_v - s|^{\lambda} \ge \delta$ for $v \ge N$. Thus by (3) and (6) we have

$$\limsup_{n\to\infty}\sum_{v=0}^{\infty}p_{n,v}\mid s_v-s\mid^{\lambda}\geq \delta\limsup_{n\to\infty}\sum_{v=0}^{\infty}p_{n,v}>0,$$

and (i) follows.

(ii) Suppose that $\{s_{\nu}\}$ has no limit point. Then given a positive number K, there is a positive integer N such that $|s_{\nu}|^{\lambda} \geq K$ for $\nu \geq N$. As above we have

$$\limsup_{n\to\infty}\sum_{\nu=0}^{\infty}p_{n,\nu}\mid s_{\nu}\mid^{\lambda}\geq K\limsup_{n\to\infty}\sum_{\nu=0}^{\infty}p_{n,\nu}>0.$$

Part (ii) follows.

When (6) does not hold, we must have

(7)
$$\lim_{n\to\infty} \sum_{\nu=0}^{\infty} p_{n,\nu} = 0;$$

and in this case we have the following theorem.

Theorem 4. Let P satisfy (3) and (7), and let $\{\xi_m\}$ be any unbounded sequence of positive numbers. Then there is an index sequence*) $\{q_m\}$ such that the sequence $\{s_n\}$, defined by

(8)
$$s_{\nu} = \xi_{m} \quad \text{for } q_{m} \leq \nu < q_{m+1},$$

is [P]-convergent to zero.

Proof. Since $p_{n,\nu} \ge 0$, it follows from (3) and (7) that the series $\sum_{\nu=0}^{\infty} p_{n,\nu}$ is uniformly convergent. Thus we can choose $\{q_m\}$ so that $q_0 = 0$, $q_{m+1} > q_m$ for $m = 0, 1, 2, \ldots$ and

$$\sum_{v=q_m}^{\infty} p_{n,v} < \frac{2^{-m}}{\xi_m^{\lambda}}, \quad m, n = 0, 1, 2, \dots.$$

Now for $\{s_n\}$ satisfying (8), we have

$$\sum_{v=0}^{\infty} p_{n,v} \mid s_v \mid^{\lambda} = \sum_{m=0}^{\infty} \sum_{v=q_{m}}^{q_{m+1}-1} p_{n,v} \mid s_v \mid^{\lambda} = \sum_{m=0}^{\infty} \xi_m^{\lambda} \sum_{v=q_{m}}^{q_{m+1}-1} p_{n,v} = \sum_{m=0}^{\infty} \xi_m^{\lambda} Q_{n,m},$$

and $0 \le \xi_m^{\lambda} Q_{n,m} \le 2^{-m}$ for all n and m. The latter series is thus uniformly convergent, and since $Q_{n,m} \to 0$ as $n \to \infty$ for each m, our result follows.

4. Some theorems on strict inclusion

Theorem 5. Let P satisfy (3).

(i) If
$$0 \le L \le \infty$$
 and

(9)
$$\liminf_{v \to \infty} \max_{n \ge 0} p_{n,v} = 0,$$

then there is a sequence $\{s_v\}$ of non-negative numbers, with $\limsup s_v = L$, which is P-convergent to zero.

(ii) If there is a sequence $\{s_v\}$ of non-negative numbers, with $\limsup s_v > 0$, which is P-convergent to zero, then (9) holds.

Proof. (i) By (9), there is an index sequence $\{v_k\}$ such that

$$\mu_k = \max_{n \geq 0} p_{n, \nu_k} \to 0 \text{ as } k \to \infty.$$

Let $\{\lambda_k\}$ be any sequence of positive numbers such that $\lambda_k \to L$ and $\mu_k \lambda_k \to 0$. Choose an index sequence $\{k_i\}$ such that

$$\sum_{i=0}^{\infty} \mu_{k_i} \lambda_{k_i} < \infty.$$

Now define $\{s_n\}$ by setting

$$s_{\nu} = \begin{cases} \lambda_{k_i} & \text{if} \quad \nu = \nu_{k_i}, \ i = 0, 1, 2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\limsup s_n = L$ and, for any positive integer m,

$$t_n = \sum_{\nu=0}^{\infty} p_{n,\nu} s_{\nu} \leqq \sum_{i=0}^{m-1} p_{n,\nu_{k_i}} \lambda_{k_i} + \sum_{i=m}^{\infty} \mu_{k_i} \lambda_{k_i}.$$

Hence t_n is finite for $n = 0, 1, 2, \ldots$ and, by (3),

$$0 \le \limsup t_n \le \sum_{i=m}^{\infty} \mu_{k_i} \lambda_{k_i} = \gamma_m \text{ say.}$$

Since $\gamma_m \to 0$, it follows that $t_n \to 0$, and hence that $\{s_n\}$ is P-convergent to zero.

(ii) Suppose $\{s_v\}$ is a sequence of non-negative numbers with $\limsup s_v \ge 2\gamma > 0$ and such that

$$t_n = \sum_{\nu=0}^{\infty} p_{n,\nu} s_{\nu} < \infty$$
 for $n = 0, 1, 2, \dots$

There is an index sequence $\{v_k\}$ such that

$$s_{\nu_k} > \gamma$$
 for $k = 0, 1, 2, \dots$

Let $\{n_k\}$ be a sequence of integers such that $p_{n_k, v_k} = \max_{n \geq 0} p_{n, v_k}$. Suppose now that (9) does not hold, so that there is a positive number δ such that $p_{n_k, v_k} > \delta$ for k sufficiently large. Then

$$\infty > t_n = \sum_{\nu=0}^{\infty} p_{n,\nu} s_{\nu} \ge \gamma \sum_{i=0}^{\infty} p_{n,\nu_i} \ge \gamma p_{n,\nu_k}$$

and so for sufficiently large k,

$$t_{n_k} \ge \gamma p_{n_k, v_k} > \gamma \delta.$$

Since $\sum_{i=0}^{\infty} p_{n,v_i}$ converges, we have $p_{n,v_i} \to 0$ as $i \to \infty$. Thus the sequence $\{n_k\}$ cannot be bounded, for if it were, we would have $p_{n_k,v_k} \to 0$ as $k \to \infty$. Consequently t_n does not tend to zero, i. e. $\{s_v\}$ is not P-convergent to zero.

Corollary 1. Let P satisfy (3). Then (9) is necessary and sufficient for there to be a non-convergent sequence which is $[P]_{\lambda}$ -convergent to zero.

Corollary 2. Let P satisfy (3), and suppose that Q is a matrix such that for every sequence $\{\sigma_v\}$ there is a sequence $\{s_v\}$ for which (1) holds. Then (9) is a necessary and sufficient condition for there to be a sequence which is not Q-convergent, but which is $[P, Q]_{\lambda}$ -convergent to zero.

^{*)} A strictly increasing sequence of non-negative integers.

Borwein and Cass, Strict inclusion between methods of summability

171

The next theorem follows easily from Theorem 5.

Theorem 6. Let P satisfy (3). Then (9) is necessary and sufficient for there to be a divergent sequence of zeros and ones which is P-convergent to zero.

It is interesting to compare Theorem 6 with the following theorem established by Agnew [1].

Theorem (Agnew). If P satisfies (2) and

$$\lim_{n \to \infty} \max_{\nu > 0} p_{n,\nu} = 0,$$

then there is at least one divergent sequence of zeros and ones, which is P-convergent.

The relation between our conditions (3) and (9) and Agnew's conditions (2) and (10) is clarified by the following scholium, the proof of which is elementary.

Scholium. The following two sets of conditions on the matrix P are equivalent:

(i)
$$\lim_{n \to \infty} p_{n,\nu} = 0, \ n = 0, 1, 2, \dots \ and \ \lim_{n \to \infty} \max_{\nu > 0} p_{n,\nu} = 0.$$

(ii)
$$\lim_{n \to \infty} p_{n,\nu} = 0, \ \nu = 0, 1, 2, \dots \ and \ \lim_{\nu \to \infty} \max_{n \ge 0} p_{n,\nu} = 0.$$

Clearly condition (2) implies that $\lim_{\nu\to\infty} p_{n,\nu}=0$ for $n=0,1,2,\ldots$ Thus by combining Theorem 6 with the scholium we can strengthen Agnew's theorem by replacing condition (2) in the hypothesis by the weaker condition:

$$\lim_{n\to\infty} p_{n,\nu} = 0 \text{ for } n = 0, 1, 2, \dots$$

Another consequence of Theorem 5 is the following 'Mazur-Orlicz type theorem' for strong summability.

Theorem 7. Let P satisfy (3). If only bounded sequences are $[P]_{\lambda}$ -convergent, then only convergent sequences are $[P]_{\lambda}$ -convergent.

Proof. By Theorem 5(i) with $L=\infty$ we find that $\liminf_{\nu\to\infty}\max_{n\geq 0}p_{n,\nu}>0$. Thus if $\sum_{\nu=0}^{\infty}p_{n,\nu}\mid s_{\nu}-s\mid^{\lambda}$ is finite for $n=0,1,2,\ldots$ and tends to zero as n tends to infinity, it follows from Theorem 5(ii) that $\limsup |s_{\nu}-s|^{\lambda}=0$, so that $s_{\nu}\to s$ as required.

The purpose of Theorem 8 is to obtain conditions under which the inclusion relations in Theorem 1(ii) and (iii) are strict. To facilitate discussion we introduce the following definitions.

The matrix P is called an S-matrix if it satisfies (3), and if there is an index sequence $\{v_k\}$ such that

(11)
$$\mu_k = \max_{n \ge 0} p_{n,\nu_k} > 0 \quad \text{for } k = 0, 1, 2, \dots$$

and

$$\lim \mu_k = 0.$$

The matrix P is called an S^* -matrix if it satisfies (3), (11) and (12), and if there is an unbounded sequence of non-negative integers $\{n_k\}$ such that $\mu_k = p_{n_k, r_k}$ for $k = 0, 1, 2, \ldots$

Let P be given. For each non-negative integer k, let $P^{(k)} = \{p_{n,\nu}^{(k)}\}$ be the matrix whose elements satisfy

$$p_{n,\nu}^{(k)} = p_{n+k,\nu}$$
 for $n, \nu = 0, 1, 2, \dots$

Thus $P^{(k)}$ is the matrix obtained from P by deleting the first k rows.

It is elementary to show that P is an S^* -matrix if and only if $P^{(k)}$ is an S-matrix for every non-negative integer k. Clearly an S^* -matrix is an S-matrix; and an S-matrix P

satisfies (9), a condition appearing in Theorem 5 and Corollary 1. A matrix P, having no column consisting entirely of zeros, and satisfying (3) is an S-matrix; if it is also triangular, then it is an S*-matrix. The set of S*-matrices is thus reasonably large.

Theorem 8. Let P be an S-matrix. Then, for any $\alpha > 1$, there is a sequence $\{s_n\}$ of non-negative numbers which is P-convergent to zero, whereas

$$\sup_{n\geq 0} \tau_n = \infty$$

where

$$\tau_n = \sum_{v=0}^{\infty} p_{n,v} s_v^{\alpha}.$$

If P is an S*-matrix, then the conclusion can be strengthened by the replacement of (13) by

(14)
$$\lim \sup \tau_n = \infty.$$

Proof. Suppose that P is an S-matrix, and let μ_k and $\{v_k\}$ be as set out in the definition of S-matrix. Define $\lambda_k = \mu_k^{-\beta}$ where $1/\alpha < \beta < 1$. Then $\lambda_k \to \infty$, $\lambda_k \mu_k = \mu_k^{1-\beta} \to 0$ and $\lambda_k^{\alpha} \mu_k = \mu_k^{1-\alpha\beta} \to \infty$. Defining an index sequence $\{k_i\}$ and a sequence $\{s_v\}$ as in the proof of Theorem 5(i), we see that

$$t_n = \sum_{v=0}^{\infty} p_{n,v} s_v$$

is finite for $n = 0, 1, 2, \ldots$ and tends to zero as n tends to infinity. On the other hand,

$$au_n = \sum_{v=0}^{\infty} p_{n,v} s_v^{\alpha} \geq p_{n,v_{k_i}} \lambda_{k_i}^{\alpha}$$
 for $i=0,1,2,\ldots$

In particular, if n_k is an integer such that $p_{n_k,\nu_k} = \mu_k$, then

$$au_{n_{k_i}} \geqq \mu_{k_i} \lambda_{k_i}^{lpha}
ightarrow \infty \quad ext{as} \;\; i
ightarrow \infty.$$

Hence (13) holds. If $n_k \to \infty$, then (14) holds.

Suppose finally that $\{n_k\}$ is unbounded but not properly divergent. Then there is a subsequence $\{n_k'\}$ of $\{n_k\}$ and a corresponding subsequence $\{\nu_k'\}$ of $\{\nu_k\}$ such that $n_k' \to \infty$ and

$$0 < p_{n'_k, v'_k} = \max_{n \ge 0} p_{n, v'_k} \to 0 \quad \text{as } k \to \infty.$$

Hence, by what has been proved above, there is a sequence $\{s_{\nu}\}$ of non-negative numbers, which is P-convergent to zero, and for which (14) holds.

Corollary 3. If P is an S-matrix, and $\lambda > \mu > 0$, then there is a sequence $\{s_v\}$ which is $[P]_{\mu}$ -convergent to zero, but which is not $[P]_{\lambda}$ -bounded.

Corollary 4. Let P be an S-matrix, and suppose that Q is a matrix such that for every sequence $\{\sigma_v\}$ there is a sequence $\{s_v\}$ for which (1) holds. If $\lambda > \mu > 0$, then there is a sequence $\{s_v\}$ which is $[P, Q]_{\mu}$ -convergent but which is not $[P, Q]_{\lambda}$ -bounded.

Corollary 5. If P is an S*-matrix and $\lambda > \mu > 0$, then there is a sequence $\{s_n\}$ which, for every non-negative integer k, is $[P^{(k)}]_{\mu}$ -convergent to zero, but is not $[P^{(k)}]_{\lambda}$ -bounded.

5. Properties of $[c_p]_a$.

Theorem 9. Let P satisfy (3) and (6). If $[c_P]_{\lambda}$ contains a divergent sequence, then it contains both bounded and unbounded divergent sequences.

Borwein and Cass, Strict inclusion between methods of summability

173

Proof. Using Theorem 7 we find that $[c_p]_i$ contains an unbounded sequence $\{s_n\}$ of non-negative numbers which is $[P]_{i}$ -convergent to zero. Define a sequence $\{s'_{i}\}$ by setting $s'_v = \min\{1, s_v\}$. Then $\{s'_v\}$ is bounded, is $[P]_v$ -convergent to zero and, by Theorem 3(i), is divergent.

Our next theorem is concerned with the inclusions

$$c < [c_P]_{\lambda} < c_P$$
 for all $\lambda \ge 1$,

which Theorem 2 shows to hold when P satisfies (2) and (3), and in particular when P

Theorem 10. There are regular matrices P for which any one of the following statements holds for every $\lambda \geq 1$;

(i) $c \subseteq [c_P]_{\lambda} \subseteq c_P;$

(ii)
$$c = [c_P]_{\lambda} \subseteq c_P;$$

(iii)
$$c \subseteq [c_P]_{\lambda} = c_P.$$

Proof. (i) Let P be the matrix associated with Cesàro summability of order 1. Then P satisfies (3) and (9), and so Corollary 1 shows that $c \neq \lceil c_P \rceil$. Also P satisfies (6), and the sequence $\{s_n\}$ given by $s_{2n}=1$ and $s_{2n+1}=0$ $(n=0,1,2,\ldots)$ is P-convergent to $\frac{1}{2}$. Thus by Theorem 3(i), we see that $[c_P]_{\lambda} \neq c_P$.

- (ii) Let P be a regular matrix for which c_P contains an unbounded sequence, but no bounded divergent sequence (for example take $p_{0,0}=1$, $p_{n,n}=\frac{1}{3}$, $p_{n,n-1}=\frac{2}{3}$ for $n=1,2,3,\ldots$ and $p_{n,r}=0$ otherwise). Thus $c\neq c_P$; and Theorem 9 shows that $[c_P]_{\alpha}$ contains no divergent sequences, so that $c = [c_P]_{\lambda}$.
 - (iii) Let P be the matrix such that for every sequence $\{s_n\}$

$$t_n = \sum_{\nu=0}^{\infty} p_{n,\nu} s_{\nu} = s_{2n}$$
 for $n = 0, 1, 2, \dots$

Then P is regular, $c \neq c_P$ and $[c_P]_{\lambda} = c_P$.

For the purpose of the next theorem we recall the definition of section-boundedness. A matrix P is said to be section-bounded if for every sequence $\{s_v\} \in c_P$, we have

$$\sup_{n,m} \left| \sum_{v=0}^m p_{n,v} s_v \right| < \infty.$$

Theorem 11. If P satisfies (2) but is not section-bounded, then for every $\lambda \geq 1$, the set $c_P - [m_P]_{\lambda}$ (and a fortiori the set $c_P - [c_P]_{\lambda}$) is not empty.

Proof. Since P is not section-bounded, there is a sequence $\{s_v\} \in c_P$ for which $\sup_{n,m} \left| \sum_{\nu=0}^{m} p_{n,\nu} s_{\nu} \right| = \infty.$ This sequence cannot belong to $[m_P]_{\lambda}$, for if it did, by Theorem 1 (iii), we would have

$$\sup_{n\geq 0} \sum_{\nu=0}^{\infty} p_{n,\nu} \mid s_{\nu} \mid = M < \infty$$

and hence

$$\sup_{n,m} \left| \sum_{v=0}^m p_{n,v} s_v \right| \leq M.$$

Theorem 12. Let the matrix P be regular and triangular. If

(15)
$$p_{n,\nu} \ge p_{n+1,\nu} \text{ for } n \ge \nu, \nu = 0, 1, 2, \dots,$$

$$(16) p_{n,n} \to 0,$$

(16)
$$p_{n,n} \to 0,$$
(17)
$$\sum_{\nu=0}^{n} p_{n,\nu} \le \sum_{\nu=0}^{n+1} p_{n+1,\nu} \quad \text{for } n = 0, 1, 2, \dots;$$

then there is a divergent sequence of zeros and ones which is P-convergent to $\frac{1}{2}$, but is not $[P]_{1}$ -convergent for any $\lambda \geq 1$.

Proof. We use the notation

$$u_n = \sum_{\nu=0}^n p_{n,\nu} s_{\nu}$$
 for $n = 0, 1, 2, \dots$

If $0 \le s_n \le 1$ for v = 0, 1, 2, ... then, by (15) and (17) we have

(18)
$$u_{n-1} - p_{n,n}(1 - s_n) \le u_n \le u_{n-1} + p_{n,n}s_n$$
 for $n = 1, 2, \dots$

We now define the sequence $\{s_n\}$ inductively by setting $s_0 = 1$, and for $\nu > 0$ setting $s_{\nu}=1$ if $u_{\nu-1}<\frac{1}{2}$ and $s_{\nu}=0$ if $u_{\nu-1}\geq\frac{1}{2}$. As a consequence of the regularity of P, we find that $\{s_n\}$ is divergent.

Let $\varepsilon > 0$. Choose an integer N such that $p_{n,n} < \varepsilon$ for all $n \geq N$. Suppose

$$\frac{1}{2} - \varepsilon < u_{n-1} < \frac{1}{2} + \varepsilon$$

holds for some integer n > N. Then either $\frac{1}{2} \le u_{n-1} < \frac{1}{2} + \varepsilon$, in which case $s_n = 0$, and so by (18)

$$\frac{1}{2}-\varepsilon < u_{n-1}-p_{n,n} \leq u_n \leq u_{n-1} < \frac{1}{2}+\varepsilon;$$

or $\frac{1}{2} - \varepsilon < u_{n-1} < \frac{1}{2}$, in which case $s_n = 1$, and so again by (18)

$$\frac{1}{2} - \varepsilon < u_{n-1} \leq u_n < u_{n-1} + p_{n,n} < \frac{1}{2} + \varepsilon.$$

Thus (19) holds with n-1 replaced by n. Since $u_n-u_{n-1}\to 0$ by (18) and $u_n\geq \frac{1}{2}\geq u_{n-1}$ for infinitely many n, it follows that there is an integer $n_0 > N$ for which (19) holds with $n=n_0$. Thus by induction (19) holds for all $n\geq n_0$ and so $u_n\to \frac{1}{2}$, i. e. $\{s_n\}$ is P-convergent to $\frac{1}{2}$. But by Theorem 2(ii) and Theorem 3, $\{s_n\}$ cannot be $[P]_{\lambda}$ -convergent for any

We now give some examples of matrices which satisfy the hypotheses of Theorem 12. Let $\{p_n\}$ be a sequence of positive numbers, and let $P_n = \sum_{n=0}^{\infty} p_n$.

(i) Let P be given by

$$p_{n,\nu} = \begin{cases} rac{P_{
u}}{P_n} & ext{for }
u \leq n \\ 0 & ext{for } n >
u. \end{cases}$$

Then P is the matrix associated with the 'weighted mean' method (\overline{N}, p_n) (see [3]). If $P_n \to \infty$ and $\frac{p_n}{P_n} \to 0$, then P satisfies the hypotheses of Theorem 12, and P is also sectionbounded.

(ii) Let P be given by

$$p_{n,\nu} = \begin{cases} \frac{p_{n-\nu}}{P_n} & \text{for } \nu \leq n \\ 0 & \text{for } \nu > n. \end{cases}$$

Then P is the matrix associated with the Nörlund summability method (N, p_n) (see [3]). If $\frac{p_n}{P_n} \to 0$, and if $\{p_n\}$ is a monotonic non-increasing sequence, then P satisfies the hypotheses of Theorem 12. Some of these matrices are section-bounded.

References

- [1] R. P. Agnew, Methods of summability which evaluate sequences of zeros and ones summable C_1 , Amer. J. Math. 70 (1948), 75—81.
- [2] D. Borwein, On strong and absolute summability, Proc. Glasgow Math. 4 (1960), 122-139.
- [3] G. H. Hardy, Divergent Series, Oxford 1949.
- [4] H. J. Hamilton and J. D. Hill, On strong summability, Amer. J. Math. 60 (1938), 588-594.

Department of Mathematics, University of Western Ontario, London 72, Ontario, Canada

Eingegangen 3. Juni 1972