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On strong summability

By D. Borwein and J. H. Rizet in London (Canada)

In this note we consider some strong Abel-type summability methods, establi-
shing the strong summability analogues of the results proved in [4].

§ 1. Introduetion
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The Abel-type methods A, and A}, introduced in [2] and [3] are defined as follows:
If
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is convergent for all # in the open interval (0, 1) and tends to a finite limit [ as z—> 1 in
the open interval, we say that the sequence {s,} is 4,-convergent to [ and write s, - I(4,).
It is evident that s, [(4,) if and only if the series defining s,(y) is convergent for all
y >0 and s,(y) > as y - co. The A, method is the ordinary Abel method.

If the series defining u,(y) is convergent for all ¥ > 0 and U,(y) tends to a finite
limit [ as y - oo, we say that the sequence {s,} is A}-convergent to [ and write s, > {(4;).

It is known that the methods A, and A;,; are regular for i > —1 (see [2],
Theorem 1 and [5], Theorem 34).
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The Hausdorff method H, and the product method A,H, are defined as under:
Let #(t) be a real function of bounded variation in the interval [0, 1], and

r=0

(1. 1) B z(f) s,oflt’(l—t)”“'dx(t).

If h,— [ as n— oo, we say that the sequence {s,}is H ~convergent to / and write s,, - [(H).
If h,—1(4,), we say that the sequence {s,} is A,H ~convergent to [ and wrile
S,—>U(4,H,).
We recall that the conditions

20 +) = x(0),
and
Fle= iy =l
are necessary and sufficient for the regularity of the method H, ([5], Theorem 208).

The absolute Abel-type summability methods, considered in [4], are defined as
under (see also [7]):

If s,(y) is of bounded variation in the range [0, o0) and tends to the limit [ as y —+ oo,
we say that the sequence {s,} is absolutely A;-convergent, or | A, |-convergent to [ and
write s,—> 1| 4, |.

If U,(y) is of bounded variation in the range [0, o) and tends 1;0 the limit [ as
y > oo, we say that the sequence {s,} is absolutely Aj;-convergent, or | A} |-convergent
to I and write s,—> 1| 4;|.

If h,—~1|A,|, we say that the sequence {s,} is absolutely A,H -convergent, or
| A,H, |-convergent to [ and write s, — al B gir

The following two theorems are proved in [3]:

Theorem A. For 2 >0, s, - I(4,) if and only if s, 1(A}) and nu,—>0(A, ).

Theorem B. For 1 >0, sﬂ—>l(Al,_1 if and only if s,—1(4;).

It is also known that:

Theorem C. If i >—1, H, is a regular Hausdorff method and s, 1(A,), then
O )

For complete references to this result, see [4].
In [4], the absolute summability analogues of these results are proved.

§ 2. Definitions

We now define strong summability methods based upon the Abel-type methods
A, and A and the product method A4,H  (see also [61.

Strong Abel-type summability [A4;].

If

f\51+1 y—1]dt = o(y) as y — oo,

we say that the sequence {s,} is strongly A,-convergent or [4,]-convergent to [ and write
s, > I[A,]
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Strong Abel-type summability [A;].
It

¥
Df | Uyt () — 1| dt = o(y) as y -» oo,

we say that the sequence {s,} is strongly A}-convergent, or [A}]-convergent to [ and write
s, > I[A}].

Strong summability [A,H ).

If h,—1[A,], we say that the sequence {s,} is strongly A,H -convergent, or
[A,H ]-convergent to I and write s,—~ I[A,H ]

Strong boundedness.
It

f | $,41(t) | dt = O(y) as y - oo,
the sequence {s,} is said to be strongly A,-bounded or [4,]-bounded and is written

s, = 0(1) [4,]

§ 3. Preliminary results

The following results are required.

Lemmal. If A >pu >—1,y >0 and )_,‘s &y ( )n s convergent for all ¢ > 0,
then Lot ’

T+ 1) P o
g +0T0—u ¥ J(y —= ) s, (t)de.

For proof see [2], Lemma 2 (i).

3.1) $.(y) =

Lemma 2. If 1 >— 1,y =0 and Esnsn (1 T )n ts convergent for all ¢ > 0, then

n=0
(3.2) w(y) = (1 +y)7 ' sy) — A + ) jy(i + 1) s, (1) dt,
0
(3.3) @) — (L + 1) 15,0) + L+ ) [ A+ i,
0
¥
(3. 4) Uyy) = 20+ 9) | (4 + 05,00 s
b
(3. 5) s (y) = Uyy) + (1 + y)u,(y),
(3. 6) s, (y) = U,1+1(y) + u,(y),
(3. 7) yuly) = Ui (y) — Usly),
d 1
(3. 8) y@ (U1+1(y)) = Ix1 [Use2@) — Upa()],
(3.9) Uy aly) = A+ 1)y 1 f’z* U,,»(t)dt
g
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For complete proofs, see [8].

Lemma 3. If 21 >—1, zw,‘ els,a” is convergent for 0 = x <1 and h, is defined
y (1. 1), then, for y >0, "7
1

o0 1
310) @) =1+ Zdh (1+Q-:!awwwuy

This lemma is proved in [2]. See also [1], p. 376.

Lemma 4. If A >—1, a is real and s,(y) = o) for y >0 and (n + @)v, =3,
for n=0,1,2,...,then v,~0 | A; |

This lemma is proved in [4] (Lemma 4).

We also require the following result of Mishra ([7], Theorem 6).

Lemma 5. If A >—1 and s, 1| A, |, then s, I[A;].

In view of the above two lemmas we have the following:

Lemma 6. If A >—1, a is real, s,(y) = O(1) for y > 0 and (n + a)v, = s, for
n=01,2,...thenv,~>0[4,]

An immediate consequence of the above lemma is the following:

Lemma 7. If A > —1, p and q are real and s,— 1[A,], then

n+p
o QS”_> i[4,]

§ 4. Main results

Theorem 1. If A >0 and s,~ I[Aj]], then s,~ l(A)).
Proof. We have, by (3. 9), that

y
) —U| S Ay~ [ 07| Uy (0) — 1] d2
0

Y
= Ay~ [{t"‘—la(t)}’;’— (A— 1)0f t"‘Zo(t)dt]

=o(1) as y - oc.

The theorem follows.

Remark. If we assume only [A4}]-boundedness in the hypothesis of the theorem,

we obtain Aj-boundedness as the conclusion.
This remark also applies to other theorems.

Theorem 2. If 4 >0 and s,—1(4}), then S, U[Aj 4]
Proof. We have, by hypothesis, that

| U (t) — 1| =o(1) as t— oo.
It follows, by the regularity of the (C.1) method, that
g ,
[ U, @) —1]dt = o(y) as y - 0o;
0
i.e.,s,~>I[4;4])
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The next theorem gives necessary and sufficient conditions for [A;]-convergence.

Theorem 3. For A > 0, the necessary and sufficient conditions for the [ A}]-convergence
of the sequence {s,} to | are:

(4 1) Sn_} z (A,;)!
and

(4. 2) fy‘t% U,jt)’dt:o(y) as y - co.

Proof. (1) Necessity.
(4. 1) follows by Theorem 1.
Now, by (3. 8), we have that

Y y
d 1
f}t@ Ul(t)‘dt :Tf | Uppr (1) — U, (2) | dt
¢ 0

Y Y
ek 1
Efjlmdwéum+7f|mm—uﬁ
1} 0

= o(y)
by Theorem 2. ki

(it} Sufficiency.

By (4. 1) and Theorem 2, we have that
& .
oflUx(t)%Hdtzo(y) as y — oo,

Hence, it follows by (4. 2) and (3. 8) that

f}UMz)—udKAf ’dz+f|U ) — 1| dt

— as Yy — oo,
This completes the proof of the theorem.

Theorem 4. For 2 >0, s, 1[A,] if and only if s,—I[A]] and nu,—0[A, ,].
Proof. (i) Suppose that s,—1[4,], i. e.

[ 150 =11 = o) as y > co.
¥ (3. 4), we have that
Up) —l=@A4+ 1)1+ t)"“lj(i + 2)*[s8;,1(2) — {]dz — (1 + ¢)"*L
Hence
ﬁUmm—um

é(l+1)f(1+t+1dtf + 20| 8404 (z)—z|dz+|l|f (1 - 8

= I(y) + o(y) as y - oo,
- 16*
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where
i

y
=(A+1) f 1+t"“1dtf(1—l—z)*[SHl(z)AHdz

o

Yy

= (A 4+ 1) f 1+ 2)* | 85,402 )—lldzf(i—l—t)-a_ldt
0

2

Y
— o =2ty [+ 2 s 1z
0
as y -+ o9,

ie.s,>I[A]]
Further, by (3.5), we have that
(1 it t) uﬂ.+1(t) = Sx+1(t) W U;L+1(E)'
But

(1 4 g1 (t) = 1 +4) ’Huz: G Dn ) Al Ay

t
"1+t
Thus we have

, Ea.Atldn t )ﬂ
JW1+tﬂ S s

n=1

d y
éflsiu(t)*ldt-l—fIU,.H(t)—Hdt_F}u”f(i + 1) *1dt
0 5 :

= 0(y) as y — oo,

}(J.i—[—l_:)—_nn nu,—0[4, ]
Consequently, by Lemma 7
nu,— 0[4, ;]
(ii) Suppose that s,—>I[4;] and nu,—>0[4, ,]. It follows from the last part of (i)
that

¥
f |31+1(t)_”dt:0(y) as Y — oo,
0

i.e., s,=>1[4,]
This completes the proof of the theorem.

Theorem 5. For A >0, s, I[A}] if and only if s,~I[4, 4]
Proof. (i) Suppose that s,—I[4;], i e,

flUHl(t)_lldt:o(y) as y - oo,
1]
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By (3. 6), we have that

ﬁam—HﬂSthﬂw—Hﬁ+fWNHﬁzﬂm+I@

as y - oco. Now, by (3. 7), it follows that

1
jW% wz.fwllm+j' Usall) — Uy(0) |

<o Ayﬁvm —um+fw )—1ldi=o(y) a8 y->oo,

in view of Theorems 3 and 2.
Hence s, — 1[4, ,].
(ii) Suppose that s, I[4, ], i.e.,

[ Isi0)—11dt= o) 5 g oo.
Again, by (3. 6), it suffices to show that
ECIEEN as g oo.
But, by (3. 2), we have that

Uflul(t)\dtéf(ﬂrt)'l{sa()—-Z]dt+ﬁf (07 [ (44 7 5,00) — L] ds

- Ilif A4ty e
0

=o(y) + L(y) as y - oo

where

H

f (LA d [ (42" | syle) — 1| dz
0

0

l

f D 5y(e) — 11 da ] 21+ ot
0 2

Y

of (1427800 —1|dze— (1 + y)"if(i + 2 s (2) — 1| dz
0

l

() as y - oo.
The theorem follows.

Theorem 6. If 2 > —1, H, is a regular Hausdorff method and s, I[A,], then
sp—>1[4,H].
Proof. We have, by (3. 10), that
1
Ba®) = (4 + )70 3 iy () = [ o, m0dr0)

0

o
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Since H, is regular, it follows that

f}hﬂlz)ml]dz fdz f{slﬂzt)—l}dx <fdzf[s,1+1zt) L] | dx(t) |

yt
1
:yﬁdx(t)lﬁf | $341(2) — | da.
0 b

Hence

Yy 1
1
goflhm(Z)—lld'zécff(yt)ldx(t)l

where

1 ]
f(t):?f|31+1(x)*l[dx=o(1) as i — oo,
1]

It follows by the regularity of the continuous Hausdorff transformation ([5], Theorem 217)
that

J’y[hnl(z)——l!dz:o(y) as y - oo.

The theorem follows.

References

(1] A. Amir (Jakimovski), Some relations between the methods of summability of Abel, Borel, Cesaro, Holder
and Hausdorff, J. Anal. Math. 8 (1954), 346—381,

[2] D. Borwein, On a scale of Abel-type summability methods. Proe. Cambridge Phil. Soc. 53 (1957), 318—322,
(3] D. Borwein, On moment constant methods of summability. J. London Math. Soc. 85 (1960), 71—77.

[4] D. Borwein and J. H. Rizvi, On Abel-type methods of summability. J. fiir die reine und angewandte Mathe-
matik 247 (1971), 189—145.

[6] G. H. Hardy, Divergent Series, Oxford 1949,

[6] B. P. Mishra, Strong summability of infinite series on a scale of Abel- -type summability methods Proe. Cam-
bridge Phil. Sec. 68 (1967), 119—127.

[7] B. P. Mishra, Absolute summability of infinite series on a scale of Abel-type summability methods. Proc.
Cambridge, Phil. Soc. 64 (1968), 377387,

[8] J. H. Rizvi, Abel-type summability. Ph. D. Thesis, Univ. of Western Ontario 1969.

Department of Mathematics, University of Western Ontario, London, Canada

Eingegangen 6. Dezember 1971




