Journal für die reine und angewandte Mathematik Herausgegeben von Helmut Hasse und Hans Rohrbach

Sond

Sonderdruck aus Band 260, Seite 119 bis 126

Verlag Walter de Gruyter · Berlin · New York 1973

On strong summability

By D. Borwein and J. H. Rizvi in London (Canada)

In this note we consider some strong Abel-type summability methods, establishing the strong summability analogues of the results proved in [4].

§ 1. Introduction

Let

$$\varepsilon_n^{\lambda} = {n+\lambda \choose n} = \frac{(\lambda+1)(\lambda+2)\dots(\lambda+n)}{n!}, \quad n=1,2,\dots,$$

$$\varepsilon_0^{\lambda} = 1,$$

$$s_n = \sum_{r=0}^n u_r,$$

$$s_{\lambda}(y) = (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{y}{1+y}\right)^n,$$

$$u_{\lambda}(y) = (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} u_n \left(\frac{y}{1+y}\right)^n,$$

$$U_{\lambda}(y) = \lambda \int_0^y u_{\lambda}(t) dt.$$

The Abel-type methods A_{λ} and A'_{λ} , introduced in [2] and [3] are defined as follows:

If

$$(1-x)^{\lambda+1}\sum_{n=0}^{\infty}\varepsilon_n^{\lambda}s_nx^n$$

is convergent for all x in the open interval (0,1) and tends to a finite limit l as $x \to 1$ in the open interval, we say that the sequence $\{s_n\}$ is A_{λ} -convergent to l and write $s_n \to l(A_{\lambda})$. It is evident that $s_n \to l(A_{\lambda})$ if and only if the series defining $s_{\lambda}(y)$ is convergent for all y > 0 and $s_{\lambda}(y) \to l$ as $y \to \infty$. The A_0 method is the ordinary Abel method.

If the series defining $u_{\lambda}(y)$ is convergent for all y > 0 and $U_{\lambda}(y)$ tends to a finite limit l as $y \to \infty$, we say that the sequence $\{s_n\}$ is A'_{λ} -convergent to l and write $s_n \to l(A'_{\lambda})$.

It is known that the methods A_{λ} and $A'_{\lambda+1}$ are regular for $\lambda > -1$ (see [2], Theorem 1 and [5], Theorem 34).

Borwein and Rizvi, On strong summability

121

The Hausdorff method H_{χ} and the product method $A_{\lambda}H_{\chi}$ are defined as under: Let $\chi(t)$ be a real function of bounded variation in the interval [0, 1], and

(1.1)
$$h_n = \sum_{r=0}^{n} {n \choose r} s_r \int_{0}^{1} t^r (1-t)^{n-r} d\chi(t).$$

If $h_n \to l$ as $n \to \infty$, we say that the sequence $\{s_n\}$ is H_{χ} -convergent to l and write $s_n \to l(H_{\chi})$. If $h_n \to l(A_{\lambda})$, we say that the sequence $\{s_n\}$ is $A_{\lambda}H_{\chi}$ -convergent to l and write $s_n \to l(A_{\lambda}H_{\chi})$.

We recall that the conditions

$$\chi(0+)=\chi(0),$$

and

$$\chi(1) - \chi(0) = 1$$

are necessary and sufficient for the regularity of the method H_{z} ([5], Theorem 208).

The absolute Abel-type summability methods, considered in [4], are defined as under (see also [7]):

If $s_{\lambda}(y)$ is of bounded variation in the range $[0, \infty)$ and tends to the limit l as $y \to \infty$, we say that the sequence $\{s_n\}$ is absolutely A_{λ} -convergent, or $|A_{\lambda}|$ -convergent to l and write $s_n \to l |A_{\lambda}|$.

If $U_{\lambda}(y)$ is of bounded variation in the range $[0, \infty)$ and tends to the limit l as $y \to \infty$, we say that the sequence $\{s_n\}$ is absolutely A'_{λ} -convergent, or $|A'_{\lambda}|$ -convergent to l and write $s_n \to l |A'_{\lambda}|$.

If $h_n \to l \mid A_{\lambda} \mid$, we say that the sequence $\{s_n\}$ is absolutely $A_{\lambda}H_{\chi}$ -convergent, or $\mid A_{\lambda}H_{\chi}\mid$ -convergent to l and write $s_n \to l \mid A_{\lambda}H_{\chi}\mid$.

The following two theorems are proved in [3]:

Theorem A. For $\lambda > 0$, $s_n \to l(A_{\lambda})$ if and only if $s_n \to l(A'_{\lambda})$ and $nu_n \to 0$ $(A_{\lambda-1})$.

Theorem B. For $\lambda > 0$, $s_n \to l(A_{\lambda-1})$ if and only if $s_n \to l(A'_{\lambda})$.

It is also known that:

Theorem C. If $\lambda > -1$, H_{χ} is a regular Hausdorff method and $s_n \to l(A_{\lambda})$, then $s_n \to l(A_{\lambda}H_{\chi})$.

For complete references to this result, see [4].

In [4], the absolute summability analogues of these results are proved.

§ 2. Definitions

We now define strong summability methods based upon the Abel-type methods A_{λ} and A'_{λ} and the product method $A_{\lambda}H_{\chi}$ (see also [6]).

Strong Abel-type summability $[A_{\lambda}]$.

If

$$\int_{0}^{y} |s_{\lambda+1}(t) - l| dt = o(y)$$
 as $y \to \infty$,

we say that the sequence $\{s_n\}$ is strongly A_{λ} -convergent or $[A_{\lambda}]$ -convergent to l and write $s_n \to l[A_{\lambda}]$.

Strong Abel-type summability $[A'_{\lambda}]$.

If

$$\int\limits_0^y\mid U_{\lambda+1}(t)-l\mid dt=o(y)\qquad \qquad \text{as }y\to\infty,$$

we say that the sequence $\{s_n\}$ is strongly A'_{λ} -convergent, or $[A'_{\lambda}]$ -convergent to l and write $s_n \to l[A'_{\lambda}]$.

Strong summability $[A_{\lambda}H_{\gamma}]$.

If $h_n \to l[A_{\lambda}]$, we say that the sequence $\{s_n\}$ is strongly $A_{\lambda}H_{\chi}$ -convergent, or $[A_{\lambda}H_{\chi}]$ -convergent to l and write $s_n \to l[A_{\lambda}H_{\chi}]$.

Strong boundedness.

If

$$\int_{0}^{y} |s_{\lambda+1}(t)| dt = O(y) \quad \text{as } y \to \infty,$$

the sequence $\{s_n\}$ is said to be strongly A_{λ} -bounded or $[A_{\lambda}]$ -bounded and is written $s_n = O(1)[A_{\lambda}]$.

§ 3. Preliminary results

The following results are required.

Lemma 1. If $\lambda > \mu > -1$, y > 0 and $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{t}{1+t}\right)^n$ is convergent for all t > 0,

$$(3.1) s_{\mu}(y) = \frac{\Gamma(\lambda+1)}{\Gamma(\mu+1)\Gamma(\lambda-\mu)} y^{-\lambda} \int_{0}^{y} (y-t)^{\lambda-\mu-1} t^{\mu} s_{\lambda}(t) dt.$$

For proof see [2], Lemma 2 (i).

Lemma 2. If $\lambda > -1$, y > 0 and $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{t}{1+t}\right)^n$ is convergent for all t > 0, then

(3. 2)
$$u_{\lambda}(y) = (1+y)^{-1} s_{\lambda}(y) - \lambda (1+y)^{-\lambda-1} \int_{0}^{y} (1+t)^{\lambda-1} s_{\lambda}(t) dt,$$

(3.3)
$$u_{\lambda}(y) = (1+y)^{-\lambda-1} s_{\lambda}(0) + (1+y)^{-\lambda-1} \int_{0}^{y} (1+t)^{\lambda} s_{\lambda}'(t) dt,$$

(3.4)
$$U_{\lambda}(y) = \lambda (1+y)^{-\lambda} \int_{0}^{y} (1+t)^{\lambda-1} s_{\lambda}(t) dt,$$

(3.5)
$$s_{\lambda}(y) = U_{\lambda}(y) + (1+y)u_{\lambda}(y),$$

(3.6)
$$s_{\lambda}(y) = U_{\lambda+1}(y) + u_{\lambda}(y),$$

(3.7)
$$y u_{\lambda}(y) = U_{\lambda+1}(y) - U_{\lambda}(y),$$

(3.8)
$$y \frac{d}{dy} (U_{\lambda+1}(y)) = \frac{1}{\lambda+1} [U_{\lambda+2}(y) - U_{\lambda+1}(y)],$$

(3.9)
$$U_{\lambda+1}(y) = (\lambda+1)y^{-\lambda-1} \int_{0}^{y} t^{\lambda} U_{\lambda+2}(t) dt.$$

Journal für Mathematik. Band 260

16

Borwein and Rizvi, On strong summability

For complete proofs, see [8].

Lemma 3. If $\lambda > -1$, $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n x^n$ is convergent for $0 \le x < 1$ and h_n is defined by (1.1), then, for y > 0,

$$(3.10) h_{\lambda}(y) = (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} h_n \left(\frac{y}{1+y}\right)^n = \int_0^1 s_{\lambda}(yt) d\chi(t).$$

This lemma is proved in [2]. See also [1], p. 376.

Lemma 4. If $\lambda > -1$, a is real and $s_{\lambda}(y) = O(1)$ for y > 0 and $(n+a)v_n = s_n$ for $n = 0, 1, 2, \ldots$, then $v_n \to 0 \mid A_{\lambda} \mid$.

This lemma is proved in [4] (Lemma 4).

We also require the following result of Mishra ([7], Theorem 6).

Lemma 5. If $\lambda > -1$ and $s_n \to l \mid A_{\lambda} \mid$, then $s_n \to l[A_{\lambda}]$.

In view of the above two lemmas we have the following:

Lemma 6. If $\lambda > -1$, a is real, $s_{\lambda}(y) = O(1)$ for y > 0 and $(n+a)v_n = s_n$ for $n = 0, 1, 2, \ldots$, then $v_n \to 0[A_{\lambda}]$.

An immediate consequence of the above lemma is the following:

Lemma 7. If $\lambda > -1$, p and q are real and $s_n \to l[A_{\lambda}]$, then

$$\frac{n+p}{n+q}\,s_n \to l[A_{\lambda}].$$

§ 4. Main results

Theorem 1. If $\lambda > 0$ and $s_n \to l[A'_{\lambda}]$, then $s_n \to l(A'_{\lambda})$.

Proof. We have, by (3.9), that

$$\begin{split} \mid U_{\lambda}(y) - l \mid & \leq \lambda y^{-\lambda} \int_{0}^{y} t^{\lambda - 1} \mid U_{\lambda + 1}(t) - l \mid dt \\ \\ & = \lambda y^{-\lambda} \left[\left\{ t^{\lambda - 1} o(t) \right\}_{0}^{y} - (\lambda - 1) \int_{0}^{y} t^{\lambda - 2} o(t) dt \right] \\ \\ & = o(1) \end{split} \qquad \text{as } y \to \infty.$$

The theorem follows.

Remark. If we assume only $[A'_{\lambda}]$ -boundedness in the hypothesis of the theorem, we obtain A'_{λ} -boundedness as the conclusion.

This remark also applies to other theorems.

Theorem 2. If $\lambda > 0$ and $s_n \to l(A'_{\lambda})$, then $s_n \to l[A'_{\lambda-1}]$.

Proof. We have, by hypothesis, that

$$|U_1(t)-l|=o(1)$$
 as $t\to\infty$.

It follows, by the regularity of the (C. 1) method, that

$$\int_{0}^{y} |U_{\lambda}(t) - l| dt = o(y)$$
 as $y \to \infty$;

i. e., $s_n \to l[A'_{\lambda-1}]$.

The next theorem gives necessary and sufficient conditions for $[A'_{\lambda}]$ -convergence.

Theorem 3. For $\lambda > 0$, the necessary and sufficient conditions for the $[A'_{\lambda}]$ -convergence of the sequence $\{s_n\}$ to l are:

$$(4.1) s_n \to l(A_1),$$

and

(4. 2)
$$\int_{0}^{y} \left| t \frac{d}{dt} U_{\lambda}(t) \right| dt = o(y) \qquad \text{as } y \to \infty$$

Proof. (i) Necessity.

(4.1) follows by Theorem 1.

Now, by (3.8), we have that

$$\begin{split} \int\limits_0^y \left| t \frac{d}{dt} \; U_{\lambda}(t) \right| dt &= \frac{1}{\lambda} \int\limits_0^y \mid U_{\lambda+1}(t) - U_{\lambda}(t) \mid dt \\ &\leq \frac{1}{\lambda} \int\limits_0^y \mid U_{\lambda+1}(t) - l \mid dt + \frac{1}{\lambda} \int\limits_0^y \mid U_{\lambda}(t) - l \mid dt \\ &= o(y) \end{split} \quad \text{as } y \to \infty, \end{split}$$

by Theorem 2.

(ii) Sufficiency.

By (4. 1) and Theorem 2, we have that

$$\int_{0}^{y} |U_{\lambda}(t) - l| dt = o(y)$$
 as $y \to \infty$.

Hence, it follows by (4.2) and (3.8) that

$$\int_{0}^{y} |U_{\lambda+1}(t) - l| dt \leq \lambda \int_{0}^{y} \left| t \frac{d}{dt} U_{\lambda}(t) \right| dt + \int_{0}^{y} |U_{\lambda}(t) - l| dt$$

$$= o(y) \qquad \text{as } y \to \infty.$$

This completes the proof of the theorem.

Theorem 4. For $\lambda > 0$, $s_n \to l[A_{\lambda}]$ if and only if $s_n \to l[A'_{\lambda}]$ and $nu_n \to 0[A_{\lambda-1}]$. Proof. (i) Suppose that $s_n \to l[A_{\lambda}]$, i. e.

$$\int_{0}^{y} |s_{\lambda+1}(t) - l| dt = o(y)$$
 as $y \to \infty$.

By (3. 4), we have that

$$U_{\lambda+1}(t)-l=(\lambda+1)(1+t)^{-\lambda-1}\int_{0}^{t}(1+z)^{\lambda}[s_{\lambda+1}(z)-l]dz-l(1+t)^{-\lambda-1}.$$

Hence

$$\int_{0}^{y} |U_{\lambda+1}(t) - l| dt$$

$$\leq (\lambda + 1) \int_{0}^{y} (1+t)^{-\lambda - 1} dt \int_{0}^{t} (1+z)^{\lambda} |s_{\lambda+1}(z) - l| dz + |l| \int_{0}^{y} (1+t)^{-\lambda - 1} dt$$

$$= I(y) + o(y)$$
as $y \to \infty$,

Borwein and Rizvi, On strong summability

125

where

$$\begin{split} I(y) &= (\lambda + 1) \int_{0}^{y} (1 + t)^{-\lambda - 1} dt \int_{0}^{t} (1 + z)^{\lambda} | s_{\lambda + 1}(z) - l | dz \\ &= (\lambda + 1) \int_{0}^{y} (1 + z)^{\lambda} | s_{\lambda + 1}(z) - l | dz \int_{z}^{y} (1 + t)^{-\lambda - 1} dt \\ &= o(y) - \frac{\lambda + 1}{\lambda} (1 + y)^{-\lambda} \int_{0}^{y} (1 + z)^{\lambda} | s_{\lambda + 1}(z) - l | dz \\ &= o(y) \end{split}$$
 as $y \to \infty$,

i. e., $s_n \to l[A'_{\lambda}]$.

Further, by (3.5), we have that

$$(1+t)u_{\lambda+1}(t) = s_{\lambda+1}(t) - U_{\lambda+1}(t).$$

But

$$(1+t)u_{\lambda+1}(t) = (1+t)^{-\lambda-1} \sum_{n=1}^{\infty} \varepsilon_n^{\lambda} \frac{\lambda+1+n}{(\lambda+1)n} n u_n \left(\frac{t}{1+t}\right)^n + u_0 (1+t)^{-\lambda-1}.$$

Thus we have

$$\begin{split} \int\limits_0^y \left| (1+t)^{-\lambda-1} \sum_{n=1}^\infty \varepsilon_n^\lambda \frac{\lambda+1+n}{(\lambda+1)n} \, n \, u_n \Big(\frac{t}{1+t} \Big)^n \right| \, dt \\ & \leq \int\limits_0^y \left| \, s_{\lambda+1}(t) - l \, | \, dt + \int\limits_0^y \left| \, U_{\lambda+1}(t) - l \, | \, dt + | \, u_0 \, | \, \int\limits_0^y \, (1+t)^{-\lambda-1} dt \right. \\ & = o(y) \end{split}$$
 as $y \to \infty$,

i. e.,

$$\frac{\lambda+1+n}{(\lambda+1)n} n u_n \to 0 [A_{\lambda-1}].$$

Consequently, by Lemma 7

$$nu_n \to 0[A_{\lambda-1}].$$

(ii) Suppose that $s_n \to l[A'_{\lambda}]$ and $nu_n \to 0[A_{\lambda-1}]$. It follows from the last part of (i) that

$$\int\limits_{0}^{y} |s_{\lambda+1}(t) - l| dt = o(y) \quad \text{as } y \to \infty,$$

i. e., $s_n \to l[A_{\lambda}]$.

This completes the proof of the theorem.

Theorem 5. For $\lambda > 0$, $s_n \to l[A'_{\lambda}]$ if and only if $s_n \to l[A_{\lambda-1}]$.

Proof. (i) Suppose that $s_n \to l[A'_{\lambda}]$, i. e.,

$$\int_{0}^{y} |U_{\lambda+1}(t) - l| dt = o(y)$$
 as $y \to \infty$.

By (3. 6), we have that

$$\int_{0}^{y} |s_{\lambda}(t) - l| dt \leq \int_{0}^{y} |U_{\lambda+1}(t) - l| dt + \int_{0}^{y} |u_{\lambda}(t)| dt = o(y) + I(y)$$

as $y \to \infty$. Now, by (3.7), it follows that

$$\begin{split} I(y) &= \int\limits_0^y \mid u_{\lambda}(t) \mid dt = \int\limits_0^1 \mid u_{\lambda}(t) \mid dt + \int\limits_1^y \frac{1}{t} \mid U_{\lambda+1}(t) - U_{\lambda}(t) \mid dt, \\ &\leq o(y) + \int\limits_1^y \mid U_{\lambda+1}(t) - l \mid dt + \int\limits_1^y \mid U_{\lambda}(t) - l \mid dt = o(y) \qquad \text{as } y \to \infty, \end{split}$$

in view of Theorems 3 and 2.

Hence $s_n \to l[A_{\lambda-1}]$.

(ii) Suppose that $s_n \to l[A_{\lambda-1}]$, i. e.,

$$\int\limits_{0}^{y}\mid s_{\lambda}(t)-l\mid dt=o\left(y\right) \qquad \text{as }y\rightarrow\infty.$$

Again, by (3.6), it suffices to show that

$$\int_{0}^{y} |u_{\lambda}(t)| dt = o(y)$$
 as $y \to \infty$.

But, by (3. 2), we have that

$$\int_{0}^{y} |u_{\lambda}(t)| dt \leq \int_{0}^{y} (1+t)^{-1} |s_{\lambda}(t) - l| dt + \lambda \int_{0}^{y} (1+t)^{-\lambda-1} dt \int_{0}^{y} (1+z)^{\lambda-1} |s_{\lambda}(z) - l| dz + |l| \int_{0}^{y} (1+t)^{-\lambda-1} dt$$

$$= o(y) + I(y) \qquad \text{as } y \to \infty$$

where

$$\begin{split} I(y) &= \lambda \int_{0}^{y} (1+t)^{-\lambda-1} dt \int_{0}^{z} (1+z)^{\lambda-1} \, | \, s_{\lambda}(z) - l \, | \, dz \\ &= \int_{0}^{y} (1+z)^{\lambda-1} \, | \, s_{\lambda}(z) - l \, | \, dz \int_{z}^{y} \lambda (1+t)^{-\lambda-1} dt \\ &= \int_{0}^{y} (1+z)^{-1} \, | \, s_{\lambda}(z) - l \, | \, dz - (1+y)^{-\lambda} \int_{0}^{y} (1+z)^{\lambda-1} \, | \, s_{\lambda}(z) - l \, | \, dz \\ &= o(y) \end{split}$$
 as $y \to \infty$.

The theorem follows.

Theorem 6. If $\lambda > -1$, H_{χ} is a regular Hausdorff method and $s_n \to l[A_{\lambda}]$, then $s_n \to l[A_{\lambda}H_{\gamma}]$.

Proof. We have, by (3. 10), that

$$h_{\lambda+1}(y) = (1+y)^{-\lambda-2} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda+1} h_n \left(\frac{y}{1+y}\right)^n = \int_0^1 s_{\lambda+1}(yt) d\chi(t).$$

Since H_{γ} is regular, it follows that

$$\begin{split} \int\limits_{0}^{y} \mid h_{\lambda+1}(z) - l \mid dz &= \int\limits_{0}^{y} dz \left| \int\limits_{0}^{1} \{s_{\lambda+1}(zt) - l\} d\chi(t) \right| \leq \int\limits_{0}^{y} dz \int\limits_{0}^{1} \mid s_{\lambda+1}(zt) - l \mid \mid d\chi(t) \mid \\ &= y \int\limits_{0}^{1} \mid d\chi(t) \mid \frac{1}{yt} \int\limits_{0}^{yt} \mid s_{\lambda+1}(x) - l \mid dx. \end{split}$$

Hence

$$\frac{1}{y}\int_{0}^{y}|h_{\lambda+1}(z)-l|dz \leq \int_{0}^{1}f(yt)|d\chi(t)|$$

where

$$f(t) = \frac{1}{t} \int_{0}^{t} |s_{\lambda+1}(x) - l| dx = o(1)$$
 as $t \to \infty$.

It follows by the regularity of the continuous Hausdorff transformation ([5], Theorem 217) that

$$\int_{0}^{y} |h_{\lambda+1}(z) - l| dz = o(y)$$
 as $y \to \infty$

The theorem follows.

References

- [1] A. Amir (Jakimovski), Some relations between the methods of summability of Abel, Borel, Cesàro, Hölder and Hausdorff, J. Anal. Math. 3 (1954), 346—381.
- [2] D. Borwein, On a scale of Abel-type summability methods. Proc. Cambridge Phil. Soc. 53 (1957), 318-322.
- [3] D. Borwein, On moment constant methods of summability. J. London Math. Soc. 35 (1960), 71-77.
- [4] D. Borwein and J. H. Rizvi, On Abel-type methods of summability. J. für die reine und angewandte Mathematik 247 (1971), 139—145.
- [5] G. H. Hardy, Divergent Series, Oxford 1949.
- [6] B. P. Mishra, Strong summability of infinite series on a scale of Abel-type summability methods. Proc. Cambridge Phil. Soc. 63 (1967), 119—127.
- [7] B. P. Mishra, Absolute summability of infinite series on a scale of Abel-type summability methods. Proc. Cambridge. Phil. Soc. 64 (1968), 377—387.
- [8] J. H. Rizvi, Abel-type summability. Ph. D. Thesis, Univ. of Western Ontario 1969.

Department of Mathematics, University of Western Ontario, London, Canada

Eingegangen 6. Dezember 1971