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DIVERGENCE CRITERIA FOR POSITIVE SERIES
D. BorweIN, University of Western Ontario, and A, Mem, University of Alberta

Suppose throughout that fis a mapping of the set of positive integers into itself,
and that {4} is a sequence of real non-negative numbers.

Using a combinatorial argument, K. A. Post [1] recently established the fol-
lowing result:

Let
(D fm+D)—f(myzn+1, n=12,.-,
and suppose that the sequence {a,} satisfies
@) ‘ 0<a, < g+ 85, n=12-.

Then % a,= 0.

Post notes Erdos’s observation that if f(n)<cn?, 0 <c¢ <}, then (2) does not,
in general, imply the divergence of X a,.

Our first theorem extends the scope of the above divergence criterion by showing
that (1) and (2) can be replaced by more general inequalities.

THEOREM 1. Let
(3) =1, n=12--,
4) fih+D)—=fm)znd,+1, n=12,-,
and suppose that the sequence {a,} satisfies
(5 O< @, S Gusy T Aalponys H=1,2,
Then % a,= .

Our second theorem shows that for a decreasing sequence {a,}, condition (3)
of Theorem 1 is redundant when a slightly modified version of condition (4) holds.

THEOREM 2. Let
(6) f(n+1) _f(n’)gnln-%—l"i»la B= 1,20
and suppose that {a,} is a decreasing sequence satisfying (5). Then X a, = .

REMARKS. (i) Post’s combinatorial argument cannot be used in the proof of
Theorem 1 because, in general, we shall have A, < 1 for some values of n.

(ii) Condition (6) cannot be replaced by (4) in Theorem 2. Indeed, if {a,} is any
given sequence of positive numbers, we can define f and {1,} by induction so that
(4) and (5) hold: Let f{1) = 1 and suppose A;,4,,+,4,—; and f(1),£(2), -, f(m)
are known. First define 4,, so that (5) holds for n = m, and then define f(m + 1)
so that (4) is satisfied for n = m.
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(iii) Conditions (4) and (5) alone do not, in general,imply the divergence of ¥ a,,
even when 4, is constant. This we can demonstrate by means of the following example:
Let A, = A>1 and let f satisfy (4). Let f%(m) = m and f*(m) = f(f*~'(m)). For
n=1,2,-,let k =k, be the largest non-negative integer for which f*(¥) = n.
Having thus determined k, a simple argument shows that r = r, is also uniquely
determined. We define {a,} by a, = 1-*2-". It is easily seen that (5) holds. But
2 8. 8 Tig A7 s

(iv) In neither Theorem 1 nor Theorem 2 can the coefficient 1, in (5) be replaced,
in general, by any larger number even for a decreasing sequence {a,}. For, let
Ap=4>0, let a, = 1/nlogn(loglogn)? for n = 2, and let f(n) be defined by
S(1) =1 and f(n+ 1) —f(n) = 2 + [An] for n = 1. Then, for arbitrary ¢ > 0, we
have a, < a,.; + (A + 8)ay, if n is large enough. But X a,< .

Proof of Theorem 1. If 1, = 0 then a, = a, > 0 for all n, and the required con-
clusion is trivial. Assume therefore that 1,_, > 0. Then by (4), f(N) > N.
Now, from (5) we have by iteration that, forn =2 1, f(n) <m <f(n + 1),

f(rn+1)—1
d,, g max{af(") == E /?,raf(,,), 0} = bn
r=f(n)
say, and hence, by (4), we have that
fne1)—1
(7) z A = r(n) F {f(n + 1) _f(n) _‘Zl}bn = Ariny + n;{nbn
m=f(n)

n
; af(h) + k%‘Nlnb".

Suppose that X a, < co. Summing on both sides of (7) for N < n < w, we
have, after interchanging the order of summations on the right, that

(8) 2 Ay, = E af(rr) + 2 Z )-,,b
m=f(N} n=N k=N n=k
From the definition of b, and since 1, £ 1, it follows that
@ w0 @ Sy—1
(9 ZAbyz2 Zharm— X Aajp= X Anl s (ny-
n=k n=k r=f) n=k

Further, by (5),

=1
Y dalyny Z Q= Gppys

n=k

whence, from (8) and (9), 2 - ;) @ = Xy a;. The last inequality is impossible,
since f(N) > N and ay > 0. Therefore X a, = .

Proof of Theorem 2. As in the proof of Theorem 1, we may assume that Ay-1>0,
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so that f(N)> N. From (5) we get for N <n = M,
IO

(10) Army £ Gpon+r T X hdpgy.
k=1(n)

Multiplying both sides of (10) by f(n) — f(n—1) and summing for N<n =< M
we obtain

M M JS(M)
;N{f(n) _f(n_l)}af(n) = f(M) Aran+1 + ?N {f(n) _f(”_l)}k_g )/.I'kaf(k)
f(M)
= f(M)af(M)+1 + X )Lkaf(k) z {f(”)ff("fl)}
J(M)

< f(Ma;pye1 + X Aapgik—f(N-1)}.
k=f(N)
Now by (6), 4, {k — fIN=1)} £ A(k—1) <f(k) —f(k—1), whence
M fIM)
(11) _EN{f(”) _f(n_l)}a’f(n; <f(M)af(M)+1 + k:EN) {f(k) — k=~ 1)}51;"(;() .

Suppose now that 2 a, < oo . Then, since {a,} is a decreasing sequence,

(12) na,—»0 as n- o0,
o0 w Sim-1 @

(13) {f(n) = f(n—D}as,, = X 2 a, = Ya, <.
n=N n=N v=f(rn—1) n=1

Letting M — oo in (11), we get, on account of (12) and (13), that

o0

E () —f0=D)ay S E {00 ~Ftk=Dlarar.

But this is impossible, since f(N) > N. Therefore % a, = .

The following guestions may be of interest:

Given an increasing integer-valued function g, what properties must f have in
order that 0 <a, < a,.,,+ a;, be a divergence criterion?

For what pairs of mappings g,/ of the set of integers into itself is it true that,
for some integer x, all values £(x), g(x), £((x)),£(g(x)), g(f(x)), (g(x)), F(FLF),
... are different?

‘The second question arises naturally in connection with Post’s combinatorial
lemma.
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