Journal für die reine und angewandte Mathematik Herausgegeben von Helmut Hasse und Hans Rohrbach

S DE G

Sonderdruck aus Band 247, Seite 139 bis 145

Verlag Walter de Gruyter · Berlin · New York 1971

On Abel-type methods of summability

By D. Borwein and J. H. Rizvi at London (Canada)

1. Introduction

Let

$$egin{aligned} arepsilon_n^\lambda &= inom{n+\lambda}{n}, \ &s_n &= \sum_{r=o}^n u_r, \ &s_\lambda(y) &= (1+y)^{-\lambda-1} \sum_{n=o}^\infty \ arepsilon_n^\lambda s_n \Big(rac{y}{1+y}\Big)^n, \ &u_\lambda(y) &= (1+y)^{-\lambda-1} \sum_{n=o}^\infty \ arepsilon_n^\lambda u_n \Big(rac{y}{1+y}\Big)^n, \ &U_\lambda(y) &= \lambda \int\limits_0^y u_\lambda(t) \, dt. \end{aligned}$$

The Abel-type summability methods A_{λ} and A'_{λ} are defined as follows (see [2] and [3]):

If

$$(1-x)^{\lambda+1}\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n x^n$$

is convergent for all x in the open interval (0, 1) and tends to a finite limit l as $x \to 1$ in (0, 1), we say that the sequence $\{s_n\}$ is A_{λ} -convergent to l and write $s_n \to l(A_{\lambda})$. The A_{δ} method is the ordinary Abel method.

Evidently $s_n \to l(A_{\lambda})$ if and only if the series defining $s_{\lambda}(y)$ is convergent for all y > 0 and $s_{\lambda}(y) \to l$ as $y \to \infty$.

If $u_{\lambda}(y)$ is defined for all y > 0 and $U_{\lambda}(y)$ tends to a finite limit l as $y \to \infty$, we say that the sequence $\{s_n\}$ is A'_{λ} -convergent to l and write $s_n \to l(A'_{\lambda})$.

The methods A_{λ} and $A'_{\lambda+1}$ are regular for $\lambda > -1$. (See [2], Theorem 1; and [4], § 4.13.)

We state next the definition of a Hausdorff method H_{χ} and the product method $A_{\lambda}H_{\chi}$:

Given a real function $\chi(t)$ of bounded variation in the interval [0, 1], let

(1.1)
$$h_n = \sum_{r=0}^{n} \binom{n}{r} s_r \int_{0}^{1} t^r (1-t)^{n-r} d\chi(t).$$

Borwein and Rizvi, On Abel-type methods of summability

If $h_n \to l$ as $n \to \infty$, we write $s_n \to l(H_n)$.

If $h_n \to l(A_\lambda)$, we write $s_n \to l(A_\lambda H_\chi)$.

We note that the conditions $\chi(0+)=\chi(0)$ and $\chi(1)-\chi(0)=1$ are necessary and sufficient for the regularity of the method H_{γ} .

The following two results are proved in [3]:

Theorem A. For $\lambda > 0$, $s_n \to l(A_{\lambda})$ if and only if $s_n \to l(A'_{\lambda})$ and $nu_n \to 0$ $(A_{\lambda-1})$.

Theorem B. For $\lambda > 0$, $s_n \to l(A_{1-1})$ if and only if $s_n \to l(A'_1)$.

It is also known that:

Theorem C. If $\lambda > -1$ and H_{χ} is a regular Hausdorff method, then $s_n \to l(A_{\lambda}H_{\chi})$ whenever $s_n \to l(A_1)$.

The case $\lambda = 0$ of Theorem C was proved by Szasz in [6] and the general case by Amir (Jakimovski) in [1]. See also [2] for a shorter proof of the general case.

In this note we prove, interalia, the absolute summability analogues of the above three theorems.

2. Definitions

We now define absolute summability based upon the Abel-type methods A_{λ} and A'_{λ} and the product method $A_{\lambda}H_{\gamma}$.

Absolute Abel-type summability $|A_1|$.

If $s_{\lambda}(y)$ is of bounded variation in the range $[0,\infty)$ and tends to the limit l as $y\to\infty$, we say that the sequence $\{s_n\}$ is absolutely A_{λ} -convergent, or $|A_{\lambda}|$ -convergent, to l, and write $s_n\to l |A_{\lambda}|$.

Absolute Abel-type summability $|A'_{\lambda}|$.

If $U_{\lambda}(y)$ is of bounded variation in the range $[0, \infty)$ and tends to the limit l as $y \to \infty$, we say that the sequence $\{s_n\}$ is absolutely A'_{λ} -convergent, or $|A'_{\lambda}|$ -convergent, to l, and write $s_n \to l |A'_{\lambda}|$.

Absolute summability $|A_1H_2|$.

If $h_n \to l \mid A_\lambda \mid$, we say that the sequence $\{s_n\}$ is absolutely $A_\lambda H_\chi$ -convergent, or $\mid A_\lambda H_\chi \mid$ -convergent, to l, and write $s_n \to l \mid A_\lambda H_\chi \mid$.

Remarks.

- 1. The definition of $|A_{\lambda}|$ -convergence is the case p=1 of the definition of $|A_{\lambda}|_{p}$ -convergence as given by Mishra in [5].
- 2. The function $\psi(x) = (1-x)^{\lambda+1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n x^n$ is of bounded variation in [0,1) if and only if $s_{\lambda}(y)$ is of bounded variation in $[0,\infty)$.

3. Preliminary Results

We require the following lemmas.

Lemma 1. If $\lambda > \mu > -1$, y > 0 and $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n \left(\frac{t}{1+t}\right)^n$ is convergent for all t > 0, then

$$(3.1) s_{\mu}(y) = \frac{\Gamma(\lambda+1)}{\Gamma(\mu+1)\Gamma(\lambda-\mu)} y^{-\lambda} \int_{0}^{y} (y-t)^{\lambda-\mu-1} t^{\mu} s_{\lambda}(t) dt.$$

This lemma has been proved in [2] (Lemma 2 (i)).

Lemma 2. If $\lambda > -1$, y > 0 and $\Sigma \varepsilon_n^{\lambda} s_n \left(\frac{t}{1+t}\right)^n$ is convergent for all t > 0, then

$$(3.2) u_{\lambda}(y) = (1+y)^{-1}s_{\lambda}(y) - \lambda(1+y)^{-\lambda-1}\int_{0}^{y}(1+t)^{\lambda-1}s_{\lambda}(t)\,dt,$$

$$(3.3) u_{\lambda}(y) = (1+y)^{-\lambda-1} s_{\lambda}(0) + (1+y)^{-\lambda-1} \int_{0}^{y} (1+t)^{\lambda} s_{\lambda}'(t) dt,$$

(3.4)
$$U_{\lambda}(y) = \lambda (1+y)^{-\lambda} \int_{0}^{y} (1+t)^{\lambda-1} s_{\lambda}(t) dt,$$

(3. 5)
$$s_{\lambda}(y) = U_{\lambda}(y) + (1+y)u_{\lambda}(y),$$

$$(3. 6) s_{\lambda}(y) = U_{\lambda+1}(y) + u_{\lambda}(y),$$

(3.7)
$$U_{\lambda+1}(y) = (\lambda+1)y^{-\lambda-1}\int_{2}^{y}t^{\lambda}U_{\lambda+2}(t)dt.$$

The proofs are elementary and are omitted. Some of these identities, in essence, are proved in [3], pp. 73—74.

Lemma 3. If $\lambda > -1$, $\sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n x^n$ is convergent for $0 \le x < 1$ and h_n is defined by (1.1), then, for y > 0,

$$(3.8) (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} h_n \left(\frac{y}{1+y}\right)^n = \int_0^1 s_{\lambda}(yt) d\chi(t).$$

This lemma is proved in [2] (Lemma 5). See also [1], p. 376.

Lemma 4. If $\lambda > -1$, a is real, $s_{\lambda}(y) = O(1)$ for y > 0 and $(n+a)v_n = s_n$ for $n = 0, 1, 2, \ldots$, then $v_n \to 0 \mid A_{\lambda} \mid$.

Proof. Let

$$\varphi(x) = (1 - x)^{\lambda + 1} \sum_{n=m}^{\infty} \varepsilon_n^{\lambda} v_n x^n$$

and

$$\psi(x) = \sum_{n=m}^{\infty} \varepsilon_n^{\lambda} s_n x^{n+a-1},$$

where m > |a| + 1. Because of the convergence of the series defining $\varphi(x)$ in (0, 1) and Lemma 4 in [2], it suffices to show that $x^a \varphi(x)$ is of bounded variation in [1/2, 1). By hypothesis, we have for $0 \le x < 1$,

$$x^{a}\varphi(x) = (1-x)^{\lambda+1} \int_{0}^{x} \psi(t) dt$$

and

$$|\psi(x)| < K(1-x)^{-\lambda-1}$$

where K is a positive constant.

Borwein and Rizvi, On Abel-type methods of summability

143

Hence

$$\int_{\frac{1}{2}}^{1} \left| \frac{d}{dx} (x^{a} \varphi(x)) \right| dx \leq (\lambda + 1) \int_{\frac{1}{2}}^{1} (1 - x)^{\lambda} dx \int_{0}^{x} |\psi(t)| dt + \int_{\frac{1}{2}}^{1} (1 - x)^{\lambda + 1} |\psi(x)| dx$$

$$\leq K(\lambda + 1) \int_{0}^{1} (1 - t)^{-\lambda - 1} dt \int_{t}^{1} (1 - x)^{\lambda} dx + K = 2K.$$

The lemma follows.

An immediate consequence of the above lemma is the following:

Lemma 5. If $\lambda > -1$, p and q are real and $s_n \rightarrow l \mid A_{\lambda} \mid$, then

$$\frac{n+p}{n+q}s_n \to l \mid A_{\lambda} \mid.$$

4. Main Results

Theorem 1. The method $|A_{\lambda}|$ is translative for $\lambda > -1$.

By this we mean that $s_n \to l \mid A_{\lambda} \mid$ if and only if $s_{n+1} \to l \mid A_{\lambda} \mid$.

Proof. Suppose that $s_n \to l \mid A_{\lambda} \mid$. We have, for $0 \le x < 1$.

$$(4.1) \ (1-x)^{\lambda+1} \sum_{n=1}^{\infty} \varepsilon_n^{\lambda} s_{n-1} x^n = (1-x)^{\lambda+1} x \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} s_n x^n + \lambda (1-x)^{\lambda+1} x \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} \frac{s_n}{n+1} x^n,$$

$$(4.2) \ (1-x)^{\lambda+1}x\sum_{n=0}^{\infty}\varepsilon_n^{\lambda}S_{n+1}x^n=(1-x)^{\lambda+1}\sum_{n=1}^{\infty}\varepsilon_n^{\lambda}S_nx^n-\lambda(1-x)^{\lambda+1}\sum_{n=1}^{\infty}\varepsilon_n^{\lambda}\frac{S_n}{n+\lambda}x^n.$$

Applying Lemma 4, we deduce from (4.1) that $s_{n-1} \to l \mid A_{\lambda} \mid$, and from (4.2) that $s_{n+1} \to l \mid A_{\lambda} \mid$. The theorem follows.

Theorem 2. If $\lambda > \mu > 0$ and $s_n \to l \mid A'_{\lambda} \mid$, then $s_n \to l \mid A'_{\mu} \mid$.

Proof. We have, by (3.1) with u in place of s, that

$$\begin{split} \int\limits_{o}^{\infty} \mid u_{\mu}(y) \mid dy & \leq \frac{\Gamma(\lambda+1)}{\Gamma(\mu+1)\Gamma(\lambda-\mu)} \int\limits_{o}^{\infty} y^{-\lambda} dy \int\limits_{o}^{y} (y-t)^{\lambda-\mu-1} t^{\mu} \mid u_{\lambda}(t) \mid dt \\ & = \frac{\Gamma(\lambda+1)}{\Gamma(\mu+1)\Gamma(\lambda-\mu)} \int\limits_{o}^{\infty} t^{\mu} \mid u_{\lambda}(t) \mid dt \int\limits_{t}^{\infty} (y-t)^{\lambda-\mu-1} y^{-\lambda} dy \\ & = \frac{\lambda}{\mu} \int\limits_{o}^{\infty} \mid u_{\lambda}(t) \mid dt < \infty. \end{split}$$

It follows that $\{s_n\}$ is $|A'_{\mu}|$ -convergent to l' (say). That l'=l is a consequence of a known result ([2], Theorem 2).

We next obtain a sufficient condition for $\mid A_{\lambda}' \mid$ -convergence.

Theorem 3. If $\lambda > 0$ and

$$\int_{a}^{\infty} y^{-1} \mid U_{\lambda+1}(y) - l \mid dy < \infty.$$

then $s_n \to l \mid A'_{\lambda} \mid$.

Proof. We have, by (3.7), that

$$\begin{split} \int\limits_o^\infty y^{-1} \mid U_{\lambda}(y) - l \mid dy & \leq \lambda \int\limits_o^\infty y^{-\lambda - 1} dy \int\limits_o^y t^{\lambda - 1} \mid U_{\lambda + 1}(t) - l \mid dt \\ & = \int\limits_o^\infty t^{\lambda - 1} \mid U_{\lambda + 1}(t) - l \mid dt \int\limits_t^\infty \lambda y^{-\lambda - 1} dy \\ & = \int\limits_o^\infty t^{-1} \mid U_{\lambda + 1}(t) - l \mid dt < \infty. \end{split}$$

Hence, by (3.5) and (3.6), we have that

$$\begin{split} \int\limits_o^\infty \mid u_{\mathbf{\lambda}}(y) \mid dy &= \int\limits_o^\infty y^{-1} \mid U_{\mathbf{\lambda}+1}(y) - U_{\mathbf{\lambda}}(y) \mid dy \\ & \leq \int\limits_o^\infty y^{-1} \mid U_{\mathbf{\lambda}+1}(y) - l \mid dy + \int\limits_o^\infty y^{-1} \mid U_{\mathbf{\lambda}}(y) - l \mid dy \\ & \leq 2 \int\limits_o^\infty y^{-1} \mid U_{\mathbf{\lambda}+1}(y) - l \mid dy < \infty. \end{split}$$

It follows that the sequence $\{s_n\}$ is $|A'_{\lambda}|$ -convergent to l' (say). That l'=l follows from the convergence of the integral

$$\int_{a}^{\infty} y^{-1} \mid U_{\lambda}(y) - l \mid dy.$$

Theorem 4. For $\lambda > 0$, $s_n \to l \mid A_{\lambda} \mid$ if and only if $s_n \to l \mid A'_{\lambda} \mid$ and $nu_n \to 0 \mid A_{\lambda-1} \mid$. Proof. (i) Suppose that $s_n \to l \mid A_{\lambda} \mid$, i. e., that $s_{\lambda}(y)$ is of bounded variation in $[0, \infty)$. By (3.3), we have that

$$\int_{o}^{\infty} |u_{\lambda}(y)| dy \leq |s_{\lambda}(0)| \int_{o}^{\infty} (1+y)^{-\lambda-1} dy + \int_{o}^{\infty} (1+y)^{-\lambda-1} dy \int_{o}^{y} (1+t)^{\lambda} |s_{\lambda}'(t)| dt$$

$$= \frac{1}{\lambda} |s_{\lambda}(0)| + \int_{o}^{\infty} (1+t)^{\lambda} |s_{\lambda}'(t)| dt \int_{t}^{\infty} (1+y)^{-\lambda-1} dy$$

$$= \frac{1}{\lambda} |s_{\lambda}(0)| + \frac{1}{\lambda} \int_{o}^{\infty} |s_{\lambda}'(t)| dt < \infty,$$

i. e., $U_{\lambda}(y)$ is of bounded variation in $[0, \infty)$. Hence, by Theorem A,

$$s_n \rightarrow l \mid A'_{\lambda} \mid$$
.

Further, by (3. 5), we have that $(1 + y)u_{\lambda}(y)$ is of bounded variation in $[0, \infty)$.

$$(1+y)u_{\lambda}(y) = (1+y)^{-\lambda} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} u_n \left(\frac{y}{1+y}\right)^n$$

$$= (1+y)^{-\lambda} \sum_{n=1}^{\infty} \varepsilon_n^{\lambda-1} \frac{\lambda+n}{\lambda n} \cdot n u_n \left(\frac{y}{1+y}\right)^n + u_o (1+y)^{-\lambda},$$

and so, by Theorem A, we have that

$$\frac{\lambda+n}{\lambda n} n u_n \to 0 \mid A_{\lambda-1} \mid.$$

Consequently, by Lemma 5,

$$n u_n \to 0 \mid A_{\lambda-1} \mid.$$

(ii) Conversely, suppose that $s_n \to l \mid A'_{\lambda} \mid$ and $nu_n \to 0 \mid A_{\lambda-1} \mid$. By reversing the argument in the last part of (i), we have that $(1+y)u_{\lambda}(y)$ is of bounded variation in $[0,\infty)$.

Hence, by (3.5), $s_{\lambda}(y)$ is of bounded variation in $[0, \infty)$. The theorem follows now by Theorem A.

Theorem 5. For $\lambda > 0$, $s_n \to l \mid A'_{\lambda} \mid$ if and only if $s_n \to l \mid A_{\lambda-1} \mid$.

Proof. (i) Suppose that $s_n \to l \mid A'_{\lambda} \mid$, i. e., $U_{\lambda}(y)$ is of bounded variation in $[0, \infty)$. In virtue of Theorem B and (3. 6), it suffices to show that $u_{\lambda-1}(y)$ is of bounded variation in $[1, \infty)$.

Now, by (3. 1) with u in place of s, we have that

$$\int_{1}^{\infty} |u'_{\lambda-1}(y)| dy \leq \lambda^{2} \int_{1}^{\infty} y^{-\lambda-1} dy \int_{0}^{y} t^{\lambda-1} |u_{\lambda}(t)| dt + \lambda \int_{1}^{\infty} y^{-1} |u_{\lambda}(y)| dy
\leq \lambda \int_{0}^{1} t^{\lambda-1} |u_{\lambda}(t)| dt + 2\lambda \int_{0}^{\infty} |u_{\lambda}(y)| dy < \infty.$$

Thus $s_n \to l \mid A_{\lambda-1} \mid$.

(ii) Conversely, suppose that $s_n \to l \mid A_{\lambda-1} \mid$. Again by Theorem B and (3.6) it suffices to show that $u_{\lambda-1}(y)$ is of bounded variation in $[0, \infty)$. Now, by (3.3), we have that

$$\int_{o}^{\infty} |u'_{\lambda-1}(y)| dy = \int_{o}^{\infty} \left| \frac{d}{dy} \left\{ (1+y)^{-\lambda} s_{\lambda-1}(0) + (1+y)^{-\lambda} \int_{o}^{y} (1+t)^{\lambda-1} s'_{\lambda-1}(t) dt \right\} \right| dy$$

$$\leq |s_{\lambda-1}(0)| + \int_{o}^{\infty} \lambda (1+y)^{-\lambda-1} dy \int_{o}^{y} (1+t)^{\lambda-1} |s'_{\lambda-1}(t)| dt$$

$$+ \int_{o}^{\infty} (1+y)^{-1} |s'_{\lambda-1}(y)| dy$$

$$\leq |s_{\lambda-1}(0)| + 2 \int_{o}^{\infty} |s'_{\lambda-1}(t)| dt < \infty.$$

The theorem follows.

Theorem 6. If $\lambda > -1$, H_{χ} is a regular Hausdorff method and $s_n \to l \mid A_{\lambda} \mid$, then $s_n \to l \mid A_{\lambda} H_{\chi} \mid$.

Proof. Let

$$h_{\lambda}(y) = (1+y)^{-\lambda-1} \sum_{n=0}^{\infty} \varepsilon_n^{\lambda} h_n \left(\frac{y}{1+y}\right)^n$$

where h_n is defined by (1.1) and let V be the total variation of $s_{\lambda}(y)$ in $[0, \infty)$. We have, for $0 \le y_0 < y_1 < \cdots < y_n$, by (3.8), that

$$\begin{split} \sum_{r=1}^{n} \mid h_{\lambda}(y_{r}) - h_{\lambda}(y_{r-1}) \mid &= \sum_{r=1}^{n} \left| \int_{0}^{1} \left\{ s_{\lambda}(y_{r}t) - s_{\lambda}(y_{r-1}t) \right\} d\chi(t) \right| \\ &\leq \int_{0}^{1} \sum_{r=1}^{n} \mid s_{\lambda}(y_{r}t) - s_{\lambda}(y_{r-1}t) \mid \mid d\chi(t) \mid \leq V \int_{0}^{1} \mid d\chi(t) \mid < \infty. \end{split}$$

The theorem follows from Theorem C.

References

- [1] A. Amir (Jakimovski), Some relations between the methods of summability of Abel, Borel, Cesáro, Hölder and Hausdorff, J. Anal. Math. 3 (1954), 346—381.
- [2] D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Phil. Soc. 53 (1957), 318-322.
- [3] D. Borwein, On moment constant methods of summability, J. London Math. Soc. 35 (1960), 71-77.
- [4] G. H. Hardy, Divergent Series, Oxford 1949.
- [5] B. P. Mishra, Absolute summability of infinite series on a scale of Abel-type summability methods, Proc. Cambridge Phil. Soc. 64 (1968), 377—387.
- [6] O. Szasz, On the product of two summability methods, Ann. Polon. Math. 25 (1952), 75-84.

University of Western Ontario, Mathematics Department, London, Canada

Eingegangen 25. November 1969