Journal fiir die reine und angewandte Mathematik
Herausgegeben von Helmut Hasse und Hans Rohrbach

W Sonderdruck aus Band 247, Seite 139 bis 145
DE
G Verlag Walter de Gruyter - Berlin - New York 1971

On Abel-type methods of summability

By D. Borwein and J. H. Rizei at London (Canada)

1. Introduction

Let
s,
n
s, = 2 u,
r=o0

s = 0+ 97 3 e (L)

n=0

w@) = (1 + 9 3 du(q

U,ly) = ﬁ,ful(t)dt.

The Abel-type summability methods A, and A} are defined as follows (see [2] and [3]):
It
(1 — z)**? S‘ ghs, o

is convergent for all x in the open interval (0, 1) and tends to a finite limit l as z—1 in
(0, 1), we say that the sequence {s,} is A,-convergent to [ and write s, I(A,). The A4,
method is the ordinary Abel method.

Evidently s,->1(4,) if and only if the series defining s,(y) is convergent for all
y >0 and s,(y) 1 as y > oo.

If u,(y) is defined for all ¥y > 0 and U,(y) tends to a finite limit [ as y > oo, we say
that the sequence {s,} is A;-convergent to [ and write s, [(4}).

The methods A, and A}, are regular for 2 > — 1. (See [2], Theorem 1; and [4],
§14.13.)

We state next the definition of a Hausdorff method H, and the product method

g sl
Given a real function y(t) of bounded variation in the interval [0, 1], let
T
421y me > (7:) S,,ft’(i — )" "dy(2).
r=0 u
. 18*
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If h,—~l as n— oo, we write s, ~ [(H ).

If k,—1(4,), we write s,~ [(4,H ).
We note that the conditions x(0 4) = x(0) and x(1) — x(0) = 1 are necessary and
sufficient for the regularity of the method #,.

The following two results are proved in [3]:

Theorem A. For 1 >0, s,—I(4,) if and only if s,—~(4}) and nu,—>0(A,;_,).

Theorem B. For 4 >0, s, 1(A,_,) if and only if s,—~1(4}).

It is also known that:

Theorem C. If 4 > —1 and H, is a regular Hausdorff method, then s,—1(A,H,)
whenever s, [(A,).

The case 4 = 0 of Theorem C was proved by Szasz in [6] and the general case by
Amir (Jakimovski) in [1]. See also [2] for a shorter proof of the general case.

In this note we prove, interalia, the absolute summability analogues of the above
three theorems.

2. Definitions

We now define absolute summability based upon the Abel-type methods A, and
A; and the product method 4,4, .

Absolute Abel-type summability | A, |.

It 5,(y) is of bounded variation in the range [0, o) and tends to the limit I as
Yy — oo, we say that the sequence {s,} is absolutely A4,-convergent, or | 4, |-convergent,
to I, and write 5, —>1] A4, |.

Absolute Abel-type summability | A} |.

If U,(y) is of bounded variation in the range [0, co) and tends to the limit ! as
y oo, we say that the sequence {s,} is absolutely A;-convergent, or | 4} |-convergent,
to [, and write s,—> 1| 4] |.

Absolute summability | A, H, |.

If h,—-1|A,|, we say that the sequence {s,} is absolutely A, H -convergent, or
| A;H, |-convergent, to [, and write s, 1| A, H_|.

Remarks.

1. The definition of | 4, |-convergence is the case p = 1 of the definition of | 4, lir
convergence as given by Mishra in [5].

2. The function 9(z) = (1 — x)**? 5 el s,z” is of bounded variation in [0, 1) if

=0

and only if s,(y) is of bounded variation in [0, co).
3. Preliminary Results
We require the following lemmas.
Lemmal. If A >u>—1,y >0 and § ehs, (—ﬁ) is convergent for all t > 0,
then

T+ 1 . ol e
(3. 1) s,(y) = Ta F OrG—2 Yy f(y—t) s, (1) dt.

a
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This lemma has been proved in [2] (Lemma 2 (i)).

Lemma 2. If 2 >—1,y >0 and X &s, (—L—) is convergent for all t > 0, then

14+t

(3.2)  m@) =+ 9 sH) — Al + ) [ (L + s, ) ds,
(3.3) ) =+ y 50 + (1 + )7 [+ s,

B4 U =2+ [+ o0,
(.5  s@) = U@ + 1+ pu),

3.6 sy) = U, + uy),

3.7 Upaly) = (4 + 1)y+lgfy# U,.,(t)dt.

The proofs are elementary and are omitted. Some of these identities, in essence,
are proved in [3], pp. 73—74.

Lemma 3. If A > —1, E el s,a" is convergent for 0 <z < 1 and h, is defined
by (1. 1), then, for y > 0,

1
(3.8) a+977 Zan (L) = [swnao.

0

This lemma is proved in [2] (Lemma 5). See also [1], p. 376.

Lemma 4. If 1 >—1, a is real, s,(y) = O(1) for y >0 and (n + a)v, = s, for
n=0,1,2,... thenv,—~ 0| A4,

Proof. Let

and

where m > | a| 4 1. Because of the convergence of the series defining ¢(z) in (0, 1)
and Lemma 4 in [2], it suffices to show that z"@(x) is of bounded variation in [1/2, 1). By
hypothesis, we have for 0 < z < 1,

Folo) = (L — a2y [y dr
and

lp@) | < K(1 —az)™**

where K is a positive constant.
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Hence

[ |4 @oen

da:g(l—}—i)fl—a: dx[|¢(z|d:+f 21 | p(z) | do

gK(z+1)f( 4z)"1‘1dtj (1 — ol . R OO,

0 [
The lemma follows.
An immediate consequence of the above lemma is the following:

Lemma 5. If 2 >—1, p and ¢ are real and s, 1| A, |, then

LIt

4., Main Results

Theorem 1. The method | A, | is translative for 1 > —1.
By this we mean that s, 1| 4, | if and only if s,0>0] 4,1
Proof. Suppose that s,—~1| 4;|. We have, for i, oI

1) (L —a)*t 3 ks, g2t =(1—a2)*le 3 s, Al —a) e Zeh—toa”,
n:]_nnl ﬂzonn n:onn—l_ll

) 3 o < 5, =
(4.2) 1 — x)“l:cné‘ﬂ € Syl = (1ﬁm)‘+1n§1 s, a— Al —as)"“né‘l &l — )

Applying Lemma 4, we deduce from (4.1) that s, ,~>1|A;], and from (4. 2) that
Swpa—>b] Ay ) The theorem follows.

Theorem 2. If A > u >0 and s,~1| A} |, then s,~ 1| AL s
Proof. We have, by (3. 1) with u in place of s, that

f“t \dy< +ji_;1 ‘u)f _}‘dyf (— e | ) | at

== (l_,_{l) @ 4_/1#1 Zd
* )E[uuﬁndtf( ) y

Ts ¥ DIG—u

t

:%f | u,(f) | dt < oo

It follows that {s,} is | A4, |-convergent to I (say). That I' = [ is a consequence of a known
result ([2], Theorem 2).
We next obtain a sufficient condition for | A} [-convergence.

Theorem 3. If 1 > 0 and

fy Uiy y)—1|dy < oo,

then s,—1| A} |.
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Proof. We have, by (3.7), that

0 = E Y
afy Y Uyy) —1l dy éﬂof y Ty [ Uy () —1 ) d8

:of =Y s —l|dtf Ay~+dy
=f J.+1 ”—lldt<oo

Hence, by (3. 5) and (3. 6), we have that

Df uly)|dy—fy*1]UA+l (y) — U,(y) | dy

éofy'll U W) —1ldy + [y~ | Uly) — 1] dy

lIA

2[ 97" Unaly) — Ll dy < oo,

It follows that the sequence {s,} is | A} |-conve
i - rgent to I’ (say). That I’ =
the convergence of the integral 4 " S L

Ofy‘ll U,(y) —1] dy.

Theorem 4. For 2 >0, s,~1| A, | if and only if s,—~1| A | and nu,—>0]4, |
Proof. (1) Suppose that s, > 1| 4, |, i. e., that s, () is of bounded variation in [0, co).
By (3. 3), we have that

f | () | dy < | 5,(0) | f (1 +y)*dy + f (1 + gy dy f (4 + 0 | s)(0) | de

o0

1 feo]
= g O f (L + 0 5300 | dt f (1 + )~ dy

¢
1 1 r
:TISA(OH‘{—Tf | 8;(8) | dt < oo,

L e., U,(y) is of bounded variation in [0, o). Hence, by Theorem A
S,=1]| A; |

Further, by (3. 5), we have that (1 -+ y)u,(y) is of bounded variation in [0, co).
But

b s

1+ puy) = (4 + )=

&

k]

Il
o

Aun( Yy )”
A

=(1+Z/)"2£fg

n=

-
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and so, by Theorem A, we have that

A+n
An

nu,—>0|A;_,1-

Consequently, by Lemma 5,
nu,>0]| A4, |

(ii) Conversely, suppose that s,~>1]14;] and nu,~>0[ A4, ,| By reversing the
argument in the last part of (i), we have that (1 + y)u,(y) is of bounded variation in
[0, o).

Hence, by (3. b), s,(y) 1s of bounded variation in [0, oo). The theorem follows now
by Theorem A.

Theorem 5. For A >0, s,~1| A}| if and only if s,~>0| 4, 4]

Proof. (i) Suppose that s,— 1| AL, i e, U,(y) is of bounded variation in [0, o).
In virtue of Theorem B and (3. 6), it suffices to show that u, ,(y) is of bounded variation
in [1, eo).

Now, by (3. 1) with z in place of s, we have that

o] o0 Y e]
[l @) dg=2f y~ "ty [0 | w(0) | di + ?Llf y~ ' u,(y) | dy

1

]

S

A () | dt 4 24 [ | () | dy < oo,

Thus s | A gl

(ii) Conversely, suppose that s,— 1| A, ,|. Again by Theorem B and (3.6) 1t
suffices to show that u, ;(y) is of bounded variation in [0, 00). Now, by (3. 3), we have
that

f | up ) | dy = f —d%lu is, 0] S S f A+ t)"-‘salmdt]

4]

dy

Y

< |5,(0) | +f l(1+y)"“dyf(1 4o s () | de

o

+f A+ ) s 1) | dy

< 5,000 | + 2f s1_,(0) | dt < oo.

The theorem follows.

Theorem 6. If A >—1, H, is a regular Hausdorff method and s,—~11 A, |, then
s.,—~> 1| A,H, |

Proof. Let

e =l 5 Y "
b = @ + 9 3 d (1)
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where &, is defined by (1. 1) and let ¥ be the total variati :
& iy variation of s
for 0 <y, <y, <-'+<uy,, by (3.8), that 2(y) 1n [0, oo). We have,

Lbge

i 1
Z1hl) — ) | =, f 5:08) — 5,10} di (0

1

< | Zlsd) —s@0 | 1d] < mexm (o

0

The theorem follows from Theorem C.
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