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1. Introduction
Let {4,} be a strictly increasing unbounded sequence with i, > 0, let
u=p+6 (p=0,1,..;0<d<1),

o
and let Y a, be an arbitrary series. Write
n=0

A= T (w=1)"a,

()'n-l-l—t)a (p = O)s

M (1) = »
('1n+1+'p-_t)d il‘_=Il (1n+i_t) (P 2 1)’

Gt = T miA)a,
v= 0

The series 3 a, is said to be summable to s by
(i) the Riesz method (R, 4, p), if w™* A*(w) > s as w— o0,
(ii) the generalised Cesaro method (C, 4, p), if C,*/m,*(0) - s.

It is known that the inclusion (R, 4, p) < (C, 4, ) holds for u > 0 [3, 6], i.e.
every series summable (R, 4, u) is summable (C, 4, 1) to the same sum; and that the
reverse inclusion

Chwes R4, )

is valid in the cases (a)[S] O0<u<1, B)[7] p=2,3,..., ©[1] =0, 4, =n.
Apart from the special case (c), the only known result [2; Theorem 4] concerning
inclusion (1) for non-integral x> 1 is that it holds when 1 < p < 2 provided the
sequence {1,} satisfies the conditions

ln+1
A l

and ln+2—ln+1 l

A‘n +17 ln . (2)

In this paper it is proved, inter alia, that inclusion (1) holds in the range 1 < p < 2

if 4, = A(n) (n > ny), where 1 is a logarithmico-exponential function (see [4]) such
that A(x) - o0 as x — oo and A(x—1)/A(x) is ultimately increasing. Examples of

sequences {4,}, satisfying these conditions but not condition (2), are given by
A, =log(l+n) and A, =n" 0O <a<1).
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2. The main results
Suppose throughout this section that
0<d< 1.

In addition to the notations already introduced, we shall also use the following:

Sp = E a,,
v=0
kn = 'ln+l—'}-m

() = — % {s1 =i 2=’ = A= 0(s =0} 0<t<dyy), ()

Avit
to= [ ad ©<v<n. @
AV
Then, as in [2], we have

Ci+é_Cit! = io.c,,'vsv n=1).
Note that
d
i A=) (Aps 1 =1 = 1 40)Aps =0’ —=0ky(Aps =1 T O <t < Ayiy). (5)

For j=0,1,2,.., define Q; to vbe the set of continuous, non-negative un-
boundedly increasing functions 4 on [j, o0) such that 0 < 2’(x) < o0 on the open

@0
set Uy = (J (i, i+1), and
i¥j

A(x—=1)/A(x) is increasing in [j+1, 00), 6)
Ax) A (x=1)/A'(x) is increasing in U,,,, ©))
V(x=1)= O(X(x)) in Ujyy. ®)

The first four of the following five theorems should be compared with like-
numbered theorems in [2].

THEOREM 1. If AeQy, A, =A(n) (n=0,1,...) and if

ld

:" > 0’ 2t lo’ (9)
then

Cny>0 O<v<n), (10)
my g vl (1 gvgn-), (1)

Cn-l.v cn—l.v—l
Ca, 0 = 0(), (12)
fno <M Cr 0 (0<r<n, M a positive constant). (13)

&n &
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Proof. Define k(u) to be the function on [4,, c0) such that
k(A(x)) = A(x)=A(x=1) (x=1); (14)

and let
¢ =¢(u, 1) = (1+8)(u—1)’-ok(w)(u—-1°""",

b=vwn=2 0<i<uuzi)

Then k(1,,,) =k, (n=0,1,..)), and hence, in view of (3) and (5), we have

() = P42, D=F(ns1, ) 0 <t <2y, n20) (15)
Differentiating (14) we find that

l—k'(/l(x)) = Al/(;(;)l) >0 (n+l<x<n+2,n=0,1, ), (16)
and hence that
Z‘P 5(1 k' (u)+(5)(u-—t)" Lis(1=0) k(w)(u—1)°*"% >

O<t<u dypy <u<iy,y) (A7)

It follows from (15) and (17) that ¢,(f) >0 (0 <t < 4,,,), and consequently, by
(4), that ¢, , >0 (0 < v < n), ie. conclusion (10) holds.
Differentiating (17) with respect to t, we get

0 o 1-6 (0
5‘?‘ (a‘z) — { ¢ +0k(u)(u—1)*" z} O<t<u, Aoy <u<iyy,) (18)
Since

Cn, v — Cn(tv)

A <t, <A, 0SvEn-1),

cn—l.v cn—l(tv)

inequality (11) will be established if we can shcw that c,(t)/c _l(t) decreases as ¢
increases in (0, 4,), and to do this it suffices to prove

() _ 60
XORESNG

In view of (15), (17) and (18), we have
éao_waﬂb»—wa“ax_rwaq
Cn(t) - ¢(A'n+2: t)_¢(2'n+17 t) ; oul Oulu Un

O<t<i,nzl. (19)

_1=e 1
‘EFJ‘ 1—6+0—kﬁm+6X%—0M00}
O<t<i,y<u, <) (20
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Further, for xeU,, A(x) >t >0, we have, by (16), that

P
(A —1* ('(x D, ) (Ax)-1)?

(1 ‘k'(l(x))” k(l(x)) 70 200~ 20— 1)

_ (M) X (x=1) 1 1 t \2
"( (%) I—A(x—l)/A(x)( - A(x))

which increases as x increases in U,, since A(x) increases and satisfies conditions (6)
and (7) with j=0. It follows that

(1-K'(u) +3)

+<s/1(x))

=1’
k(u)

increases as u increases in (¢, ) N U (45 4;+1), and (19) is a consequence of this
and (20).

It remains to establish conclusions (12) and (13).

In virtue of (4), (15), (16) and (17), we have

0
rio=koal0) = kokoni 3o

= Sk ka1 (va—2,)°" ‘{1 k' (wp)+0+ (1-8) —= k(w"i}

A (x—1) Ax,) = A(x,— 1)
A'(x,) A(x,) =0,

(Ao <V, <Ay < gy < W, = AX,) < Ayr)-

= 3k by (1) =) +3+(1-0)

Hence, by (6) and (8), there are positive constants B, B,, B,, b such that
0 S Bk (psr =4}

< By ki AR5

< Bkn+1
<

M (n21), @n

)‘n +2
and

Cn, 0 = bkn+1 2’;‘[;%

> bkll'4'l

By (13 0) (22)
An+2

It follows from (21) and (9) that

oo = 0(6 72 221) = o)

which is conclusion (12).
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Finally, by (6), (9), (21) and (22), we have, for 0 <r < n-1,

Ch, 0 <Bkn+1 /134.1 <Bkr+1 Ay <£ C 0 ,
én ln+2 gn Ar+2 ér b ér

i.e. conclusion (13) holds. This completes the proof of Theorem 1.

THEOREM 2. If AeQy, A, =A(n) (n=0,1,..),
& 0’ .—" b
g 0yt
C,1*% = o(&),
then ( 3 )
S, =071,

1+4
ky

¢, >0,

AS(w) = o(%) “(w— ),

X
A w) = 0(&) (v — ),
where y= y(w) is the integer such that A, < w < A,4,.

Proof. Essentially the same as the proof of Theorem 2 in [2], with the present
Theorem 1 and identity (20) respectively replacing Theorem 1 and identity (21)
of [2].

The next theorem is a simple consequence of Theorem 2 (see the proof of Theorem
3 in [2)).

THEOREM 3. If AeQq, 4, =A(n) (n=0,1,...) and C,}*% = 0(4,,,1%,,), then
Ao (w) = o(Ww' %) (w— o).

THEOREM 4. If A€ Q;, A, =A(n) (n=j,j+1,..), and 1 < p <2, then
(C, 4, 1) = (R, 4, p).

Proof. Case (). j=0. Since both (C, 1, u) and (R, 4, p) are regular methods
of summability (see [2; Lemma 4]), this case follows immediately from Theorem 3.

Case (ii). j=1,2,.... Let
M) =Ax+j) (x=0), L,*=1*0)=4,,; (#=0,1,..).

Then A* € Q,. Further, if fj a,is summable (C, 4, p) to s, then i a,.jis summable
n=0 n=0
(C, A*, ) to s—s;_; and hence, by case (i), is summable (R, ¥, u) to s—s;_, SO
that % a, is summable (R, 4, u) to s. Thus case (ii) is established.
n=0
THEOREM 5. If A, = A(n) (n = ngy, ng+1, ...), where A is a logarithmico-exponen-

tial function such that A(x) = o0 as x —» o0 and A(x—1)/A(x) is ultimately increasing,
and 1 < u <2, then

C4Lwes R4 0.
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Proof. By known properties of logarithmico-exponential functions (see [4])
A(x) is ultimately increasing. Also, since A(x—1)/A(x) is ultimately increasing, we
have that, for x > x, say,

Fax=l) X

Mx=1)>0, X(x=1) > 0, 70— = 705 20,

so that A (x—1

The logarithmico-exponential function A(x)A'(x—1)/A'(x) is thus ultimately
increasing. Further, since

> A(x—1)— 0 as x = 0.

. Ax=D)
0<lim—%

<1,
we have that [4; p. 34]
Alx—1)
A (x)
It follows that A€ Q; for j sufficiently large, and Theorem 5 is thus a consequence
of Theorem 4.

=0(1) (x 2 xo).
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