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1. Introduction
Let {Xn} be a strictly increasing unbounded sequence with Xo ^ 0, let

li=p+8 0? = 0, 1, ...; 0 ^ ( 5 < 1),
00

and let £ n̂ be an arbitrary series. Write
71=0

Av<w

v= 0

The series ]£«„ is said to be summable to s by

(i) the Riesz method (R, X, n), if w-tt A^(w) -> s as iv -> oo,

(ii) the generalised Cesaro method (C, X, ft), if C//7r/(0) -* j .

It is known that the inclusion (i?, A, n) c (C, A, ̂ i) holds for n ^ 0 [3, 6], i.e.
every series summable (R, X, n) is summable (C, A, j<) to the same sum; and that the
reverse inclusion

(C, X, n) <= {R, X, n) (1)

is valid in the cases (a)[5] 0 < n ^ 1, (b)[7] fi = 2, 3, ..., (c)[l] ^ ^ 0, An = «.
Apart from the special case (c), the only known result [2; Theorem 4] concerning
inclusion (1) for non-integral n > 1 is that it holds when 1 < n < 2 provided the
sequence {Xn} satisfies the conditions

and i i

7'V'J. (2)
In this paper it is proved, inter alia, that inclusion (1) holds in the range 1 < fi < 2

if Xn = X(n) (n ^ n0), where X is a logarithmico-exponential function (see [4]) such
that X(x) -*• oo as x -* oo and A(x—1)/A(x) is ultimately increasing. Examples of
sequences {Xn}, satisfying these conditions but not condition (2), are given by
X,, = log (1 +n) and Xn = n* (0 < a < 1).
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2. The main results
Suppose throughout this section that

0<<5 < 1.

In addition to the notations already introduced, we shall also use the following:

n

v = 0

cn(t)=--^{(Xn+1-t)(Xn+2-ty-(Xn-t)(Xn+l-t)>} (O^t<xn+l), (3)

Cn.y~ J Cn(t)dt (0<V<«) . (4)

Then, as in [2], we have

n ^ n - 1 — ZJ tn,v1 >v V7 & 1).
v = 0

Note that

For y = 0 , l ,2 , . . . , define Qj to be the set of continuous, non-negative un-
boundedly increasing functions X on [j, oo) such that 0 < X'(x) < oo on the open

00

set Uj = (J (/, /+1), and

X(x—])/X(x) is increasing in [j+1, oo), (6)

X(x)X'(x— l)IX'(x) is increasing in UJ+1, (7)

c)) in UJ+l. (8)

The first four of the following five theorems should be compared with like-
numbered theorems in [2].

THEOREM 1. If XeQ0, Xn = X(n) (n = 0, 1,...) and if

then
cB > v>0 (O^v^nl (10)

^ C (1 < v < « - l ) , (11)( ),
C n - l , v C n - l , v - l

cB,o = ^ n ) 5 (12)

^ - (0 ^ r < «, M a po.y/f/ye constant). (13)
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Proof. Define k(u) to be the function on [Xu oo) such that

k(X(x)) = X(x)-X(x-1) (x > 1); (14)

and let

4> = <f>(u, t) = Yy1

ot

Then k(Xn+i) = kn (n = 0, 1, ...), and hence, in view of (3) and (5), we have

cn(t) = (f>(Xn+2> t)-<f>(Xn+u t) (0 < t < A n + 1 , n > 0) . (15)

Differentiating (14) we find that

1*(*(*)) jf
A \X)

and hence that

> 0 ( » + l < j c < i i + 2f « = 0,1, . . .) , (16)

(u-ty-2 > 0

(0<t<u, Xn+l<u<Xn+2). (17)
It follows from (15) and (17) that cn(t) > 0 (0 ^ t < Xn+1), and consequently, by
(4), that cnv> 0 (0 ^ v ^ n), i.e. conclusion (10) holds.

Differentiating (17) with respect to t, we get

Since

: = j—r (̂ v < tv < AV + 1 , 0 ^ v ^ n— 1),

inequality (11) will be established if we can shew that cn(t)/cn-y(t) decreases as t
increases in (0, Xn), and to do this it suffices to prove

In view of (15), (17) and (18), we have

c»'(0 ^(^n + 2> 0~lA(^n+l> 0
cn(0 4>{K+2i 0 - 00**+1«0

. (20)
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Further, for XEUU X(X) > t ^ 0, we have, by (16), that

(x)X'(x-\) l / _j
i-x(x-»mx) V~ H

which increases as x increases in Uu since X(x) increases and satisfies conditions (6)
and (7) with j = 0. It follows that

(u-t)2

(\-k'(u)+8) k(u)

increases as u increases in (t, oo) n (J (Xlf Al+1), and (19) is a consequence of this
and (20). I = 1

It remains to establish conclusions (12) and (13).
In virtue of (4), (15), (16) and (17), we have

OUJ u = wn, t = vn

= 5kokn+l n)-vn)

(Xo < vn < Xt < Xn+i < wn = A(xn) < Xn+2).

Hence, by (6) and (8), there are positive constants B, Blf B2, b such that

2 Kn+1 An+1

^Bf^l5
n+1 (Ol), (21)

and

cn, o ^ bkn+1 /„+2

(22)

It follows from (21) and (9) that

Cn, 0 =

which is conclusion (12).
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Finally, by (6), (9), (21) and (22), we have, for 0 <-r < n - 1 ,

cn, 0 ^ p^n+l K + \ ^ D ^r+1 ^r + 1 ^ -° Cr, 0
£r» K + 2 £/. ^r + 2 £r b £r

i.e. conclusion (13) holds. This completes the proof of Theorem 1.

THEOREM 2. / / X e Qo, Xn = X{n) (n = 0, 1,...),

/ = x(iv) w <//e integer such that Xx< w ^ Ax+l.

Proof. Essentially the same as the proof of Theorem 2 in [2], with the present
Theorem 1 and identity (20) respectively replacing Theorem 1 and identity (21)
of [2].

The next theorem is a simple consequence of Theorem 2 (see the proof of Theorem
3 in [2]).

THEOREM 3. If XeQ0, Xn = X{n) (n = 0,1,. . .) and Cn
1+d = o(Xn+1 X8

n+2), then
A1+d(w) = o(wl+s) (w->oo).

THEOREM 4. / / XeClj, Xn = X(n) (n = j,j+\, ...), and 1 < n < 2, then

(C, X, n) s (R, X, n).

Proof. Case (i). j = 0. Since both (C, X, fi) and (R, X, ̂ ) are regular methods
of summability (see [2; Lemma 4]), this case follows immediately from Theorem 3.

Case (ii). j= 1,2, ... . Let

X*(x) = X(x+j) (x > 0), V = X*(n) = Xn+J (n = 0, 1, ...).
00 OO

ThenA*efi0. Further, if £ an is summable (C, X, fi) to J, then X fln+Jis summable
n=0 n=0

(C, X*, fi) to ^—Jj-i and hence, by case (i), is summable (R, X*, fi) to s—Sj-u so
00

that X an is summable (/?, A, ft) to J. Thus case (ii) is established.

THEOREM 5. If'Xn = X(n) (n = n0, no +1, . . . ) , vt>/;ere A w a logarithmico-exponen-
tial function such that X(x) -> oo as x -* oo a«d A(x—1)/A(x) w ultimately increasing,
and 1 < ji < 2, f/ien

(C, A, AO S (i?, A, ^ ) .

JOUR. 5 5
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Proof. By known properties of logarithmico-exponential functions (see [4])
X(x) is ultimately increasing. Also, since A(x—\)/A(x) is ultimately increasing, we
have that, for x ^ x0 say,

x(x-i) > o, v(x-1) > o, j ^ -%$>o,
X(x 1) /{x)

so that v ( y _ n
A(x) ———— ^ A(x— 1) —> oo as A: -> oo.

A. (X)

The logarithmico-exponential function A(x)A'(x— l)/X'(x) is thus ultimately
increasing. Further, since

we have that [4; p. 34]

= 0(1)

It follows that A G fi,- for y sufficiently large, and Theorem 5 is thus a consequence
of Theorem 4.
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