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In general, however, we are interested in short papers dealing with material
familiar to a reasonable number of MONTHLY readers. We are able to afford more
space than is common in research journals, and authors are urged to add an
occasional paragraph if that will increase readability. But most important, there
must be a sound mathematical reason for an article. One theorem with real
content and an elegant proof is worth twenty-five new definitions or minor
generalizations. Results without significant examples are always judged inferior
to those with meaningful applications.

II. Classroom Notes. Contributions to this section are few in number. This
is not surprising since many undergraduate fields have been so worked over that
new insights useful in the classroom are not easy to produce. Good Classroom
Notes are greatly valued and will be published promptly.

A PROPERTY OF GRADIENTS
D. BorwEIN, University of Western Ontario, Canada, and A. MEIR, University of Alberta, Canada
The object of this note is to prove the following:

THEOREM. Let f be a continuous real-valued function on the unit Euclidean n-
ball B={x: ||x|| <1}, let the first order partial derivatives of f exist at every point
in the interior of B, and let |f(x)| <1, whenever ||x|| =1. Then there is a point v in
the interior of B for which ”grad f(v)” =1.

The function f, defined by f(x) =a-x where ”a” =1, shows that the final
inequality in the Theorem cannot be sharpened. The Theorem thus provides the
answer to H. S. Shapiro’s question concerning the best value of the constant in
Problem E 1986 [this MoNTHLY, 75 (1968) p. 787]. In addition, the Theorem
shows that the hypotheses of the problem, that f be differentiable on an open
set containing B, and that If(x)l =1 for every x in B, can be relaxed.

Proof of the Theorem. Let

g(x) = ||]]2 = ()2, A = min g(®).
lzll =1
Then g(x) 20 whenever ”x” =1, and N=g(0) 0. There is thus a point v such
that HvH <1 and g(v) =\. Consequently
grad g(v) = 2v — 2f(v) grad f(v) = 0,
and so
1@ [lgrad f@)|* = [[4]]* = f@)* + X = J()*.

The required conclusion follows either if A<0, or if A=0 and g(») =0 for some
point v such that O<||vH <1,
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In the one remaining case we have g(x) >\ =0 whenever 0<Hx” <1;so that
|f(x)| <1 whenever ||x|| =% and, consequently, there is a positive e for which

max lf(x) +e| <3
Izl =1/2

Setting
h(x) = Hoc“2 — {f(x) + €}, w= min k(x),

lzl <1/2
we observe that h(x)>0 whenever ||x|| =3, and u<h(0) = —e2<0. Hence there
is a point @ such that ||| <} and &(w) =u. As above we deduce that

{f@) + ¢} lgrad f@)|* = [l]]* = {7@) + ¢}* + u < {(w) + €},
from which it follows that ||grad f(w)|| <1.

PIVOTAL ROLE OF THE TRIPLE CROSS PRODUCT

Francis P. CALLAHAN, Pennsylvania State University
This paper gives a proof of the following:

THEOREM. Let (R, ) be a real inner product space and let (x oy) be a vector
product defined in R. If R is at least two dimensional and if the vector product
satisfies the identity

¢y (xoy)oz = (x'z)y — (y 2)x

for all x,y, z in R, then
(A) (x oy) is linear in both x and y,
(B) (xoy)+(rox)=0foral x,y in R,
(C) R is exactly three dimensional, and
(D) if (i, j, k) is an orthonormal basis for R, then (i o j) =ck, (j o k) =ci, and
(k o i) =cj, where ¢ is either +1 or —1.

By a vector product, (x oy), is meant a not necessarily linear function de-
fined for all ordered pairs, (x,y), of elements of R and having values again in R.
The identity (1) is the “triple cross product identity” and the conclusion of the
Theorem is that (x oy) can only be the usual three-space cross product (either
right handed or left handed). That is, the triple cross product identity is suffi-
cient to single out the usual cross product(s) from among all possible vector
products, and it even forces the dimension of the space on which it operates to
be three.

The proof of the Theorem makes use of some lemmas.

LEMMA 1. xoy=y o (—x) for all x,y in R.

Proof. Let xoy=u and y o (—x)=u’ and apply (1) to show that uo v
=y’ o vforall vin R, so that
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