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1. Introduction. Suppose throughout that &« > 0, 8 is real, and N is a

non-negative integer such that eV 4+ 8 > 0. A series >,¢ @, of complex terms
is said to be summable (B, «, 8) to [ if, as x — <0,

p R gl
L T T B P

where s, = a9 + a1 + ...+ a,. The Borel-type summability method (B, «, 8)
is regular, i.e., all convergent series are summable (B, «, ) to their natural
sums; and (B, 1, 1) is the standard Borel exponential method B.

Our aim in this paper is to prove the following Tauberian theorem.

THEOREM. If
(1) p= _%r Ay = 0(”")) and

(ii) 30 a, is summable (B, «, 8) to I,
then the series is summable by the Cesiro method (C, 2p + 1) to L.

The case & = 8 = 1 of the theorem is known (3, Theorem 147), and the
case & > 1 is a consequence of this case and the following established result
(1, result (I); 2, Lemma 4).

(1) If @« > v > 0 and, for any non-negative integer M > — §/~,

= anX
n;M I'(yn + 6)
is convergent for all x, then hypothesis (ii) implies that 3.5 o, is summable
(B, v, 8) lo L

The proof in this paper of the theorem, however, makes no appeal to result
(I) and is valid for all « > 0.

The theorem remains true if hypothesis (ii) is replaced by

(i1)" 3.5 a, is summable (B, a, B8) to I,
by which it is meant that, as y — o0,

v et o anxm+5—1
J,ra g Tt e
This is a consequence of the following known result (2, Theorem 2).

(I1) A series is summable (B, a, 8 + 1) to I if and only if it is summable
(B', @, B) to L.

(3_.1 = 0).
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2. Preliminary results.

LemMa 1. (i) 2'T(y —9) 2 T(¥) ifx =y >v =0,
(i) Ty —2) ST fr20,0<x=y—v—1
Proof. Let ¢(v)

4, §§ 12.3, 12.31):

Vo) _

_ _ Iy —1v)
¥(@)

Iy — o)

e—(yﬁv) ¢

1 fm l:e—t
“lgx— ) | T -1

w ,—1 —(y—v)t
6 —
= logx — f £
0 ¢

= logx — log(y — o)
2 0,

so that ¢(v) = ¢(0), as required.
Similarly, in case (ii) we have:

VO oo — “[gj (A
Sy =t = [ 7| T -5

w 1 —(y—o—-1) ¢
14 —ig
= logx — f
0

i

=logx — log(y — v — 1)

=0,

from which the required inequality follows.
LemMa 2 (cf. 3, Theorem 137). Let x > 0, let

and let

Then
(a)
(b)

()
(d)

(e)

an+f—1
—r X

) e Tt )

0<5<1/€{, 'Y=':%(a6)2) %<§'<%,

o
Z Up—1 asx— o0,
n=N

1
— 8

a«

Uy S Upyn Whenmn <

=R I

Upy1l = U, When n =

+

QI8 RIR

Uy = 0(e™);
|n—z/je|>8z

Up = 0 (e—xﬂ);

|n—z/a|>zt

o —a?(n—zja)?/2z i
= Ty L+ 06T

0<yp<2—1

when

dat

]dt

P

dt

m=N,N+1,...,

n —=

lIA

741

= x'I'(y — v). In case (i), we have, by standard results
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Proof. Part (a). This result is well known (see 1, p. 130).

Part (b). Since
un+1 2T (an + B)

e Tlem+B+a)’

the required results follow from Lemma 1 with v = &,
Part (c). Let #y and nz be the mtegers such that

y-'—'jan+'3-|—a.

n1>5+axgm—1 and n2<—-—6x<n2+1
¢ 4

By Stirling’s theorem, we have:
i 1
T(an + B) = (2'1r)1"2 & (an)an+ﬁ 1,2{1 + O(;;)} ,

and hence

? —1/2
i e any—z —1/2( % )““""ﬁ / )
=0 —anl(an )aﬂ1+ﬁ R ERIYE | T O\ e x _—oml
sy O(eaaz- X )aml) iy O(eaaz—am lng(um:’x))
= ' X1

adg—(z+adz) log§1+a6)) - O(e—mz),

= Ofe
where
) (aﬁ) (ozﬁ) 1 :

Ay =—a3+(1+a6)10g(1+a3)—£a—‘ + ...>3(a6)

Similarly, - = O(g-§ax)’
where - 3) @ 5) . 2

(s
Ay = b4+ (1'—ad) log(l —ad) =75 B+ 5.5+ > 5 ().
Next, forr = 0, x = 2(1 — B)/as, we have, by Lemma 1 (ii) with v = ar,

y = at + B + ar:
Ungtr _ £ Tlm+ B - 4 + Lo
e, Tlam+ f+o ) = od) ™

) < amy + 8 — 1. It follows that

since 0 < x(1 + Fod
= 3 e Sty 3 (L a8 = 0@ = 0ET™)-
" r=0 =0

n—zfa> 8z -
Finally, by part (b), we have:
Uy = Up S Xlhp, = O(xe %) = 0(¢™).

n—aja<—0iz n<z ja—8z

This completes the proof of part (c). We shall prove pa.rt (e) before part
Part (e). Let h = n — x/a, so that |h] < «f.

(d)-
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By Stirling’s theorem, we have:
log T'(an + B8) = 3log2r - an + (an + B — %) logaen + O(i)
=Ztlog2r —x — ok
+ (k4 x4+ 8 — 3)loglah + x) + O(i)
=4$log2r —x —ah + (on+ 8 — %) logx

9‘3; + O(R‘E)} + o(i)

=1log2r —x —ah+ (an+ 8 — )Iogx-{—ah+2—k

o) {8 o)

= Hlog2r — &+ (ah 42+ 8 — } logx + 5L 4 0(:H)

since 3 < { < % and |A| = %,
Consequently,

logu, =logae —x + (en + B — 1) logx — log T'(an + B)

+(ah+x+ﬁ—%){%k_

2

- lloga_ - (ﬁ _[__ O(xar—z)
2 2mx 2 !

and therefore

_.12}.2.,'%{ + O(xgg-_ )},

. o
“ = Vi)
as required. ‘
Part (d). Since e® = O(e~*"), it suffices, in view of Part (c), to prove that

Un = O(e_:ﬂ).

Bxgln—x,’abzt
By Parts (b) and (e), the largest term in this sum is O(e~®%~1%2), and the
required estimate is an immediate consequence.

3. Ggsﬁro sums. In this section we prove some lemmas about the Cesiro
sums s, of a given series » 7 a,. These are defined by the formula:

n

A

S; = E (V + )an—vy
=0 P

so that syt = a,, sp = S, = @G0 + @1 + ... + ay, and generally,

n
EX 1 (AL Ak T

v=0 v
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LemMA 3 (cf. 3, Theorem 146). If & > 0,

g T+ k) 2™
1) ¢r(x) =« ;Um )

T2 x (@™ /T (an + B)) is convergent for all positive t, and ay = 0 for n <N,
then, for x > 0,

i o & xﬂ:n+ﬁ+k—1
(2) : REN " r(an + B + k) =) an+f—1
i i g |
= T ‘ru (x — ) T oulx — 1) dt,é\r'g“_—l‘(an—l—ﬁ)

= /T (an + B)) for all positive ¢ is
Proof. The convergence of Tr_n (aat /ﬂm e
equivalent to the convergence of T2_x (5ut/T(an + B)) for all positive i
(2, Lemma 4). The right-hand side of (2) is thus equal to

N & s & Tm k) (e — i
I‘ozk) J:, CEDIN DY T(an + B) & Tlem + k) m!

n=N

ak = Sn = F(m + k) % tcm+ﬂ71(x _ t)am-}-k—l dt
T (k) ﬂz=:N T(an + B) £ T(am + k)m!Jo
o
)

il

antam+-f+k—1

=, i T'(m + k)«
£t St £t T (am + om + B + k)

o w Loy b= 1) F e
kEan( m—n T(am + B+ &)

n=N m=N
o xam+ﬁ+k—1 m (m I 1)5
¥ T T n
=& X Tam + B+ B m—n
am-+B+E—1

=) x %
=ak2___—rr(am+‘8+k)sm,

m=N

Ii

R

as required.
Lemma 4. If k= 0 and 20 0a is summable (B, a, B) to 1, then

an+G—1

o X .
(3) Tk + 1) ,;ngﬁ—r_‘r(an—i-ﬁ—i-k)_’l as x —

Proof. The case k =0 is immediate. Suppose that k > 0. If Y5 dxt
summable (C, k) to [, i.e. if

k
ko n'l w0,
Sn __——I‘(k—l—l) as n—
then
aks:I‘(k-l- 1) l At 0y

Ten+ B+ % Tln+p)
and (3) follows by the regularity of the (B, a, 8) method.

SUMMABILITY 745

There is, therefore, no loss in generality in assuming that
a, =0 for n <N.
Then, by Lemma 3, it suffices to prove that

4) kx"kf (x — ) gplx — D" () dt —1 asx— 0,
0
where

U(t) *e =N % F(O[ﬂ + ,@) ’
By hypothesis, we have:

(5) o(t) =1 as t— 0,

Further, since
odT(n+ k) &
T(an + k)n!  Tlan + 1)

we have by (1) and the regularity of the (B, e, 1) method, that

as n— co,

(6) eFgp(x) > 1 as x— oo,

A straightforward application of a standard result (3, Theorem 6) yields (4)
as a consequence of (58) and (6).

Levma 5. If 3°¢ a, is summable (B, a, 8) to 0 and

(7) S = o(wh) Bz20,0<u=s=1L,A>—-1LA+u>0),
then
(8) sn=0(n*) + o(mr2).
Proof. 1t follows from (7), by a known result (3, Theorem 144), that

(9) sno= o(me),
and that, if 0 < H < 1/a and |n — x/a| < Hzx, then
(10) sy — Stejm = 0f (|n — x/als + 1)aM
uniformly as x — c0. Let 1 < ¢ < %, and write
a6 3 (6 — shor) e

n=N I'(an + 8 + k)

= Ole-_zl: + + :l
Nen<sja—zt  zje—aiZnszjetst  n>ziatat

=85+ 8+ S
Then

—2 k = R
S1+ Sa+ S+ ae S[zfa]fn;N T{an + B + &)
an+f—1

- %
=a” ) 5 ——————— =9(l) asx —w

S " Tlan + B+ k)

xan-i-ﬂ— 1



746 D. BORWEIN

by Lemma 4, and hence we have:
(11) St 4+ Sa+ Ss + x*st (1 4 0(1)) = o(l) as x— 0.

Next, by (9) and Lemma 2(d),
4 antf—1 ]
u

Tlan + 8+ k)

—z Z ﬁl+n__ﬁfﬁ_]
+ 0| ¢ ¢ Tlm+ B+ k)

n>zfetr

(12) Si1+ S = O[e_z

X
N§n<zlm—$r

ant+f+k—1
Mu—k —z E __]
O ¢ Nzn<zja—zb T(an + 8 + k)

—z x
+ O\:xﬁrkﬂ n);_l_zg Tan+B8+k—2A—u)

_ O(x“'”'ke_ﬂ) 0O<y<2f— 1)

i Bi-A—p—1 ]

=o0(l) asx— 0.

Further, by (10) and Lemma 2(e),

0w —=

x|® xnrn+ﬁ+k«1 ]
a)- = "[’“He_x lu-zz,@r( al T 1) T(n + 8+ 8
o —alhn? 2z hn — _ x/a)
e o[x“—k m;ﬂ; (lhni# + 1) \7-(2f.-rx) e :l ( 7
O(x)\—k—lﬂ J‘m (Itlp + l)e*oﬂ 12)% dt)

- O(xl—kﬂziﬁ) + o0 (xk—k)
= o(x****) asx— .
It follows from (11), (12), and (13) that
G (1 + 0(1) = o(x*) + o(@**/?) asx—®,

. ; : ; e,
and the required conclusion (8) is an immediate conseque

4. Proof of the theorem. Suppose, without loss of generalit;f, thaét ;!\ i (;.
By .hypothesis (i), we have that (7) holds with & =0, p =1, an :
Hence, by Lemma 5, we have:

(14) S = S = o(wrt1?),

i 1= -

smscspf;;l;gtli_at mp = 2p + 1, where m is an integer and 0 < p £ 1. We shall
prove that

"o +1/2+T/2
(15) sto= o(n® )
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forr =0,1,..., m By (14), we see that (15) holds for r = 0. Assume that
it holds for a given r < m, so that (7) holds with

E=(+Ds N=p+ 1+
Since
Fr+ D = dmp = p + 3,
it follows, by Lemma 5, that

sSrFbe 0 (n{TH8)  o(pe+iizir+inlyy = o (mPri/aH(rDpr2)

which is (15) with » + 1 replacing .
Hence, (15) holds for » = 0, 1,...,m;in particular, the case r = m vields:

S = o),

ie 20 a,is summable (C, 2p + 1) to 0.
‘This completes the proof of the theorem.,
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