SCALES OF LOGARITHMIC METHODS OF SUMMABILITY
D. Borwein and R. Phillips
(received November 6, 1968)

1. Introduction. We suppose throughout that p is a non-
negative integer, and use the following notations:

1
Iogox . Iogix- s -Iogpx

for x > e ,
- P

T (%) =

p

0 otherwise ,

where logox = x for x > ey = 1, and logn+1x - Iog(lognx)

e
n
for }(Zem_1 = e (n = 0,1,2,-++);
o n
o (x) = £ 7w (n)x (-1 < x < 1);
P n=0
n
s = Z ak (n = 0,1,2,:-+);
= k=0
1 n
t(n) = =——— T 7w (k)s, (n>e Ya
P 10gp+1 k=0 k p+il
co
The series = a is said to be summable L_ to s,
n=0 P
o0
write © a =3s (L) or s — s (L), if
n P n P
n=0
1 ® n
Iim —— £ w(n)s x = 8.
(x) n
x—+1- p n=0
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and we



o LEMMA 2, L. o f
If tp(n) -+ g as n — © the series X a is said to be summable £ 5 P— P
n=0 -
- 00 Proof. Since { ~ (N, g ) with g = w (n), the lemma follows
to s, and we write £ a =s (£ ) or s_- s(f ) (see[5]) P n n P
nen o P o P from a known result [4, Theorem 1].

Given two summability methods A, B we write A =2 B if any LEMMA 3. If x > eP' y > 0, then

series summable B is summable A to the same sum; if in addition
there is a series summable A but not summable B we write A =2 B.
2 2 i i = -xt

If A2B and B 2 A the two methods are said to be equivalent and (log %) v _ f e 1 (t)dt,
we write A >~ B. Itis known [5] that the LP and { 5 methods are P
regular and that L0 A .@0 ~ gy where L and { are standard
Iogarithmic methods (for definitions see {3]). The aim of this paper

is to establish various inclusion theorems for the two scales of methods.

where ?\p Y(t) is defined by the recursive formulae:

2. Lemmas. We require four lemmas. -
\ tY
1 o (t) = ,
LEMMA 1. If s - s(f ), then s = o/————) and J 0,y y)
n p ~— n Tl' (n)
pt1 [
1 ‘ 1 o0 i
a =eof——1 . y-
LS t) = —/— A t)d = aee ).
. (Terri(n)) r+1,y() T(y) ‘j; 4 r,u() “ (r=ydy 2, )
]
Proof. The case p = 0 of this lemma is due to Ishiguro [3,
Theorem 4], For n - 1 > ep+1 we have that Proof. The lemma is true for p = 0, since, when x > B, P 1,

1 ‘ o) o0
s = [t (n) log  ,n=-t (n-1) log  (n-1)]; | -y _ .-y _ _1 -xt y-1. -xt
1 +1 (log x) ~ =x " = e t° “dt = e A t)dt.
n o omm) Up p+ P P 8o r(y) fo fo 0,y"
hence Assume the lemma is true for p = r. Then, for
X > e we have
log +1(n - 1) ‘ =
™ (n)s =t(n)-t(n-1)——P—'—"—"—*’0,
pH PP log _ m
% -ulog X
-y _ 1 r+1 y-1
(Iogﬁ_ix) = —T(Y) ) u du
and so,
m ,(n) %
’ pti 1 -u y-1
= - 1 - 0 = e
Trp+1(n)an Trp+1(n)s ﬂp+1(n ) 1'rp+1(n )s -1 ) fo (logrx) u’ ' d
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1 w 1 © xt
'y'-
= — d
=5 S/ ufo e At
* ot 1 ® ye1
= [ e Tat [ o' (Bdu
0 rly) 7 ) U

= f e A (t)dt,
rt+i,y

the inversion in the order of integration being justified by Fubini's
theorem since all the functions concerned are non-negative and
Lebesgue measurable, The lemma is thus established by induction.

The case p = 1 of the next lemma is due to Hardy [2,page 268].

LEMMA 4, If n > ep, y > 0, then

where the function ¢ is non-negative and independent of n.

Proof. By Lemma 3,

00 1

-y -Nnx n
(logpn) = fo e ?gply(x)dx = J(; t b(t)dt,

1 :
h t) ==X\ log —).
where o(t) =2\ (log )

3. Inclusion Theorems.

THEOREM 4. There is a series summable [ ol but not

summable L i.e. L 13_ 2 &
= P P pti
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Proof. Iet N be the integer suchthat N =1 < e

il & M
with i = <1, Iet P
L ] mmieg m Tt for n>e
n P P+1 — P+.i ,
0 for n < e
pti.
Then
-1
] - [ {lo n -
n=q ( gp+ ) (logp_HN) )
n=1 H
2 T 7 (k) (log k)- Lo {Io t)-i'i £)dt
k=N p +1 fN gp+1 1TP( )
n=1
= ¥ é )
k=N -
where

k+1 t

= - i
& / (fk (e = ‘H'P(X) (logp+ix) )dx).dt
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and,



3 -1 n)- tends to a
Hence Z §k converges, and so S -1 1(10gp+1

N )-1—!1

k= n ,
] = + m (n} (IOg

finite limit as n —~® . Since § =8 _, P pt1

i(L n)-i + k where kn tends to a finite
we have that s = i( ng+i -

limit as n - % .

d as
i but does not converge, an
Consequently {sn} is bounded bu

a = ™ W W i m
Of (n)), it follows from a known tauberian theore
I 3
orollary] that a i bl
5, C h is not L ~summable.
[ ’ 1 ]
yhig m > N,
W hat = a_ is 4 summable. For
e now show tha
have that
o A ) .
| n
m (log
t (m) = “p 1(11) =% + k
+1 log 21’1‘1 N + i n
1 -1-1

lo n)
w s = TTP{n)( gP+1-
1 gp+2 n=N

1 m
z ow (n)
+1 ' n
Iogp+2 =0 P
i m
1 s 7 )k ,
=G 1 m Em T log T n=0 P+1 "
i ng+2 p+2

finite Iimit as m —- .
t m) tends to a
and hence P+1(

L .
THEOREM 2. L, =2 &y

450

Proof. By Lemma 4, for n > e
—_— - pti

(n) 1

St e,
0

I
=
Q

0
fn
i

where ¢(t) is non-negative and independent of n, and hence, by
a result due to Borwein [1, Theorem A], Lp+1 = LP. The
stronger inclusion follows immediately from Theorem 1 and Lemma 2.

THEOREM 3. L > g
P P

Proof. We consider a series used to show the existence of a
series summable by the Abel method A, but not summa

ble by any
Cesaro method [2, Theorem 56]

Let

ei/(1+x)

It is known that a ig not O(nr) for any r, and hence, by Lemma 1
n
Q0

Z a_ is not summable ¢ Since the series is summable A, and
n

n=0
[2, page 81] A 1 ™~ L0 < Lp. the theorem can now be deduced
from Lemma 2.

THEOREM 4. ¢ ) > £ p.

Proof. The inclusion f |

prt = 4y follows immediately from a

a known theorem for N methods [2, Theorem 14].

inclusion may be deduced from Theorem 1.
is easy.

The stronger
However a direct proof

Consider

= 1 n > e
n = +1
TTP+1(n) P
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o0

Then s — 0 (2 Yo . €l ® a is summable { .
n pt+i p+1
n=0
" 0
but s # ol——); hence, by Lemma 1, Z 2 is not {
n T (n) n

p+i n=0

summable.
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