SCALES OF LOGARITHMIC METHODS OF SUMMABILITY

D. Borwein and R. Phillips

(received November 6, 1968)

1. <u>Introduction</u>. We suppose throughout that p is a non-negative integer, and use the following notations:

$$\pi_{p}(x) = \begin{cases} \frac{1}{\log_{0} x \cdot \log_{1} x \cdot \cdots \cdot \log_{p} x} & \text{for } x \geq e_{p}, \\ 0 & \text{otherwise,} \end{cases}$$

where $\log_0 x = x$ for $x \ge e_0 = 1$, and $\log_{n+1} x = \log(\log_n x)$ for $x \ge e_{n+1} = e^n$ (n = 0,1,2,...);

$$\sigma_{p}(x) = \sum_{n=0}^{\infty} \pi_{p}(n) x^{n}$$
 (-1 < x < 1);

$$s_n = \sum_{k=0}^{n} a_k$$
 (n = 0,1,2,...);

$$t_p(n) = \frac{1}{\log_{p+1} n} \sum_{k=0}^{n} \pi_p(k) s_k (n \ge e_{p+1}).$$

The series $\sum_{n=0}^{\infty} a_n$ is said to be summable $\sum_{p=0}^{\infty} b_p$ to s, and we

write
$$\sum_{n=0}^{\infty} a_n = s(L_p)$$
 or $s_n \to s(L_p)$, if
$$\lim_{x \to 1^-} \frac{1}{\sigma_p(x)} \sum_{n=0}^{\infty} \pi_p(n) s_n x^n = s.$$

Canad. Math. Bull. vol. 12, no. 4, 1969

If $t_p(n) \to s$ as $n \to \infty$ the series $\sum_{n=0}^{\infty} a_n$ is said to be summable ℓ_p to s, and we write $\sum_{n=0}^{\infty} a_n = s(\ell_p)$ or $s_n \to s(\ell_p)$ (see [5]).

Given two summability methods A, B we write $A \supseteq B$ if any series summable B is summable A to the same sum; if in addition there is a series summable A but not summable B we write $A \supseteq B$. If $A \supseteq B$ and $B \supseteq A$ the two methods are said to be equivalent and we write $A \supseteq B$. It is known [5] that the L and ℓ methods are regular and that $L_0 \supseteq L$, $\ell_0 \supseteq \ell$ where L and ℓ are standard logarithmic methods (for definitions see [3]). The aim of this paper is to establish various inclusion theorems for the two scales of methods.

2. Lemmas. We require four lemmas.

LEMMA 1. If
$$s_n \to s(\ell_p)$$
, then $s_n = o\left(\frac{1}{\pi_{p+1}(n)}\right)$ and
$$a_n = o\left(\frac{1}{\pi_{p+1}(n)}\right)$$
.

Proof. The case p = 0 of this Iemma is due to Ishiguro [3, Theorem 4]. For $n - 1 \ge e_{p+1}$ we have that

$$s_n = \frac{1}{\pi_p(n)} [t_p(n) \log_{p+1} n - t_p(n-1) \log_{p+1} (n-1)];$$

hence

$$\pi_{p+1}(n)s_n = t_p(n) - t_p(n-1) \frac{\log_{p+1}(n-1)}{\log_{p+1}n} \rightarrow 0,$$

and so,

$$\pi_{p+1}(n)a_n = \pi_{p+1}(n)s_n - \frac{\pi_{p+1}(n)}{\pi_{p+1}(n-1)}\pi_{p+1}(n-1)s_{n-1} \to 0.$$

LEMMA 2. $L_p \supseteq l_p$.

<u>Proof.</u> Since $\ell_p \stackrel{\sim}{=} (\overline{N}, q_n)$ with $q_n = \pi_p(n)$, the Iemma follows from a known result [4, Theorem 1].

LEMMA 3. If $x \ge e_p$, y > 0, then

$$(\log_{p} x)^{-y} = \int_{0}^{\infty} e^{-xt} \lambda_{p,y}(t) dt,$$

where $\lambda_{p,y}(t)$ is defined by the recursive formulae:

$$\lambda_{0,y}(t) = \frac{t^{y-1}}{\Gamma(y)},$$

$$\lambda_{r+1,y}(t) = \frac{1}{\Gamma(y)} \int_{0}^{\infty} u^{y-1} \lambda_{r,u}(t) du \qquad (r=0,1,2,...).$$

<u>Proof.</u> The lemma is true for p = 0, since, when $x \ge e_0 = 1$,

$$(\log_0 x)^{-y} = x^{-y} = \frac{1}{\Gamma(y)} \int_0^\infty e^{-xt} t^{y-1} dt = \int_0^\infty e^{-xt} \lambda_{0,y}(t) dt.$$

Assume the Lemma is true for p = r. Then, for $x \ge e_{r+1}$ we have

$$(\log_{r+1} x)^{-y} = \frac{1}{\Gamma(y)} \int_{0}^{\infty} e^{-u\log_{r+1} x} u^{y-1} du$$

$$= \frac{1}{\Gamma(y)} \int_{0}^{\infty} (\log_{r} x)^{-u} u^{y-1} du$$

$$= \frac{1}{\Gamma(y)} \int_{0}^{\infty} u^{y-1} du \int_{0}^{\infty} e^{-xt} \lambda_{r,u}(t) dt$$

$$= \int_{0}^{\infty} e^{-xt} dt \frac{1}{\Gamma(y)} \int_{0}^{\infty} u^{y-1} \lambda_{r,u}(t) du$$

$$= \int_{0}^{\infty} e^{-xt} \lambda_{r+1,y}(t) dt,$$

the inversion in the order of integration being justified by Fubini's theorem since all the functions concerned are non-negative and Lebesgue measurable. The lemma is thus established by induction.

The case p = 1 of the next lemma is due to Hardy [2, page 268].

LEMMA 4. If $n \ge e_p$, y > 0, then

$$(\log_p n)^{-y} = \int_0^1 t^n \phi(t) dt,$$

where the function ϕ is non-negative and independent of n.

Proof. By Lemma 3,

$$(\log_p n)^{-y} = \int_0^\infty e^{-nx} \lambda_{p,y}(x) dx = \int_0^1 t^n \phi(t) dt,$$

where $\phi(t) = \frac{1}{t} \lambda_{p,y} (\log \frac{1}{t})$.

3. Inclusion Theorems.

THEOREM 1. There is a series summable ℓ_{p+1} but not summable L_p i.e. $L_p \not = \ell_{p+1}$.

<u>Proof.</u> Let N be the integer such that N - 1 < e $_{p+1}$ \leq N, and, with i = $\sqrt{-1}$, let

$$a_{n} = \begin{cases} \pi_{p}(n) (\log_{p+1} n)^{-1-i} & \text{for } n \geq e_{p+1}, \\ 0 & \text{for } n < e_{p+1}. \end{cases}$$

Then

$$s_{n-1} - \left((\log_{p+1} n)^{-1} - (\log_{p+1} N)^{-1} \right)$$

$$= \sum_{k=N}^{n-1} \pi_{p}(k) (\log_{p+1} k)^{-1-1} - \int_{N}^{n} (\log_{p+1} t)^{-1-1} \pi_{p}(t) dt$$

$$= \sum_{k=N}^{n-1} \Phi_{k},$$

where

$$\begin{split} & \Phi_{k} = \int_{k}^{k+1} \left(\int_{k}^{t} (-\frac{d}{dx} \pi_{p}(x) (\log_{p+1} x)^{-1-i}) dx \right) dt \\ & = \int_{k}^{k+1} \left(\int_{k}^{t} (\pi_{p}(x))^{2} (\log_{p+1} x)^{-1-i} \left(\sum_{r=0}^{p} \frac{\pi_{r}(x)}{\pi_{p}(x)} + (1+i) (\log_{p+1} x)^{-1} \right) dx \right) dt \\ & = \int_{k}^{k+1} \left(\int_{k}^{t} O(\frac{1}{x^{2}}) dx \right) dt \\ & = O(\frac{1}{k^{2}}) . \end{split}$$

Hence $\sum_{k=N}^{\infty} \Phi_k$ converges, and so $s_{n-1} - i(\log_{p+1} n)^{-1}$ tends to a finite limit as $n \to \infty$. Since $s_n = s_{n-1} + \pi_p(n)(\log_{p+1} n)^{-1-i}$, we have that $s_n = i(\log_{p+1} n)^{-1} + k_n$ where k_n tends to a finite limit as $n \to \infty$.

Consequently $\{s_n\}$ is bounded but does not converge, and as $a_n = O(\pi_{p+1}(n))$, it follows from a known tauberian theorem ∞ [5, Corollary] that $\sum_{n=0}^{\infty} a_n$ is not $\sum_{n=0}^{\infty} a_n$ is not $\sum_{n=0}^{\infty} a_n$

We now show that $\sum\limits_{n=0}^{\infty}$ a is ℓ_{p+1} summable. For $m \geq N$, we have that

$$t_{p+1}(m) = \frac{1}{\log_{p+2} m} \sum_{n=N}^{m} \pi_{p+1}(n) \left(\frac{(\log_{p+1} n)^{-i}}{i} + k_n \right)$$

$$= \frac{1}{i \log_{p+2} m} \sum_{n=N}^{m} \pi_{p}(n) (\log_{p+1} n)^{-1-i}$$

$$+ \frac{1}{\log_{p+2} m} \sum_{n=0}^{m} \pi_{p+1}(n) k_n$$

$$= \frac{1}{i \log_{p+2} m} s_m + \frac{1}{\log_{p+2} m} \sum_{n=0}^{m} \pi_{p+1}^{(n) k},$$

and hence $t_{p+1}(m)$ tends to a finite limit as $m \to \infty$.

THEOREM 2.
$$L_{p+1} \supset L_{p}$$
.

Proof. By Lemma 4, for $n \ge e_{p+1}$,

$$\frac{\pi_{p+1}(n)}{\pi_{p}(n)} = (\log_{p+1} n)^{-1} = \int_{0}^{1} t^{n} \phi(t) dt,$$

where $\phi(t)$ is non-negative and independent of n, and hence, by a result due to Borwein [1, Theorem A], $L_{p+1} \supseteq L_p$. The stronger inclusion follows immediately from Theorem 1 and Lemma 2.

THEOREM 3.
$$L_p \supset \ell_p$$
.

<u>Proof.</u> We consider a series used to show the existence of a series summable by the Abel method A, but not summable by any Cesàro method [2, Theorem 56].

Let

$$e^{1/(1+x)} = \sum_{n=0}^{\infty} a_n x^n.$$

It is known that a is not $O(n^r)$ for any r, and hence, by Lemma 1, ∞ Σ a is not summable ℓ_p . Since the series is summable A, and n=0[2, page 81] A \subseteq L \cong The theorem can now be deduced from Lemma 2.

THEOREM 4.
$$\ell_{p+1} \supset \ell_p$$
.

<u>Proof.</u> The inclusion $\ell_{p+1} \supseteq \ell_p$ follows immediately from a a known theorem for N methods [2, Theorem 14]. The stronger inclusion may be deduced from Theorem 1. However a direct proof is easy.

Consider

$$s_n = (-1)^n \frac{1}{\pi_{p+1}(n)} \quad (n \ge e_{p+1}).$$

Then $s_n \to 0$ (ℓ_{p+1}), i.e. $\sum_{n=0}^{\infty} a_n$ is summable ℓ_{p+1} , but $s_n \neq o(\frac{1}{\pi_{p+1}(n)})$; hence, by Lemma 1, $\sum_{n=0}^{\infty} a_n$ is not ℓ_{p+1} summable.

REFERENCES

- D. Borwein, On methods of summability based on power series. Proc. Roy. Soc. Ed. 64 (1957) 342-349.
- 2. G. H. Hardy, Divergent Series (Oxford, 1949).
- K. Ishiguro, On the summability methods of logarithmic type. Proc. Japan Acad. 38 (1962) 703-705.
- K. Ishiguro, A tauberian theorem for (J, p_n) summability. Proc. Japan Acad. 40 (1964) 807-812.
- R. Phillips, A tauberian theorem for a scale of logarithmic methods of summation. Proc. Cambridge Phil. Soc. (to be published).

The University of Western Ontario London, Ontario