NOTE ON SUMMABILITY FACTORS

D. BORWEIN*.

[Extracted from the Journal of the London Mathematical Society, Vol. 29, 1954.]

1. Introduction. It is assumed throughout that $\lambda > 0$ and that all functions are real. The main object of this paper is to establish version (a) of the following theorem.

THEOREM 1. (a) In order that $\int_{1}^{\infty} x(t) k(t) dt$ be summable $|C, \lambda|$ whenever $\int_{1}^{\infty} x(t) dt$ is summable $|C, \lambda|$ it is necessary and sufficient that, for some constant $c \ge 1$,

(i) k(t) be measurable and essentially bounded in (1, c),

(ii)
$$\frac{k(t)}{t} = \frac{1}{\Gamma(\lambda)} \int_{t}^{\infty} (u-t)^{\lambda-1} h(u) du \quad p.p. \text{ in } (c, \infty),$$

where $u^{\lambda+1}$ h(u) is measurable and essentially bounded in (c, ∞) .

(b) Replace $|C, \lambda|$ by (C, λ) and "essentially bounded" in (ii) by "of bounded variation".

Version (b) of the theorem has been proved by Sargent†. We shall, however, give a somewhat simpler proof of the necessity part of this result. There are results‡ similar to the above which involve the additional

^{*} Received 14 July, 1953; read 19 November, 1953.

[†] The result as stated here follows from Lemma 5, Theorem 2 and the proof of Theorem 1 in Sargent (4).

[‡] For a $|C, \lambda|$ result see Borwein (2) where references are given to (C, λ) results and to series analogues. Further references appear in Sargent (4).

NOTE ON SUMMABILITY FACTORS.

hypothesis that the λ -th derivative of k(t) exists and is absolutely continuous in [1, w] for all $w \ge 1$.

2. Notation and some preliminary results. Let x(u) be integrable L in every finite interval in $(1, \infty)$. Then, for w > 1,

$$\int_{1}^{w} \left(1 - \frac{u}{w}\right)^{\lambda} x(u) du = \lambda \int_{1}^{w} x(u) du \int_{u}^{w} \left(1 - \frac{u}{t}\right)^{\lambda - 1} \frac{u}{t^{2}} dt$$
$$= \lambda \int_{1}^{w} t^{-\lambda - 1} dt \int_{1}^{t} (t - u)^{\lambda - 1} ux(u) du.$$

Hence $\int_{1}^{\infty} x(u) du$ is

(i) summable (C, λ) if and only if $\int_1^\infty t^{-\lambda-1} dt \int_1^t (t-u)^{\lambda-1} u \, x(u) \, du$ is convergent;

(ii) summable $|C, \lambda|$ if and only if $\int_1^\infty t^{-\lambda-1} dt \left| \int_1^t (t-u)^{\lambda-1} u \, x(u) \, du \right| < \infty$;

(iii) bounded (C) if and only if $\int_1^w t^{-\mu-1} dt \int_1^t (t-u)^{\mu-1} ux(u) du$ is bounded in $(1, \infty)$ for some $\mu > 0$.

We shall be concerned with the following function spaces (it is to be assumed that $1 \le a \le b \le \infty$):

M(a, b): the space of functions measurable and essentially bounded in (a, b).

L(a, b): the normed vector space of functions x(t) integrable L in (a, b), the norm being defined by the equation

$$||x|| = \int_a^b |x(t)| dt.$$

The general linear functional in this space is given by an equation of the form*

$$f(x) = \int_a^b x(t) \, \alpha(t) \, dt,$$

where $\alpha(t) \in M(a, b)$.

BV(a, b): the space of functions having bounded variation in [a, b).

F: the normed vector space of functions x(t) continuous in $[1, \infty)$ and tending to finite limits as $t \to \infty$, the norm being defined by the equation

$$||x|| = \overline{\underset{t \geqslant 1}{\text{bound}}} |x(t)|.$$

The general linear functional in this space is given by an equation of the form*

$$f(x) = \int_{1}^{\infty} x(t) d\alpha(t) + \gamma \lim_{t \to \infty} x(t),$$

where $\alpha(t) \in BV(1, \infty)$ and γ is a constant independent of x.

B: the space† of functions x(t) such that $\int_{1}^{\infty} x(t) dt$ is bounded (C).

 S_{λ} : the normed vector space of functions x(t) such that $\int_{1}^{\infty} x(t) dt$ is summable (C, λ) , the norm being defined by the equation

$$||x|| = \overline{\operatorname{bound}} \left| \int_1^w t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u x(u) du \right|.$$

 S_{λ}^{a} : the vector subspace of S_{λ} which consists of all functions x(t) such that x(t) = 0 for t < a and $tx(t) \in L(a, \infty)$.

 V_{λ} : the normed vector space of functions x(t) such that $\int_{1}^{\infty} x(t) dt$ is summable $|C, \lambda|$, the norm being defined by the equation

$$||x|| = \int_1^\infty t^{-\lambda - 1} dt \left| \int_1^t (t - u)^{\lambda - 1} u x(u) du \right|.$$

 V_{λ}^{a} : the vector subspace of V_{λ} which consists of all functions x(t) such that x(t) = 0 for t < a and $tx(t) \in L(a, \infty)$.

3. We shall require the following lemmas.

LEMMA: 1. (a) For $c \ge 1$, the general linear functional in the space V, c is given by an equation of the form

$$f(x) = \frac{1}{\Gamma(\lambda)} \int_1^\infty u \, x(u) \, du \, \int_u^\infty (t-u)^{\lambda-1} \, h(t) \, dt,$$

where $t^{\lambda+1}h(t) \in M(1, \infty)$.

(b) Replace V by S and M by BV.

Proof of (a). It is easily seen that the equation

$$y(t) = t^{-\lambda - 1} \int_{1}^{t} (t - u)^{\lambda - 1} u x(u) du \quad (t \geqslant 1)$$

^{*} Banach (1), 65.

^{*} Banach (1), 59-60; see also Sargent (4), Lemma 1.

[†] It is implicit in the definition of this space and of S_{λ} and V_{λ} that they are contained in L(1, w) whenever $1 < w < \infty$.

[†] Cf. Sargent (4), Lemma 2.

NOTE ON SUMMABILITY FACTORS.

defines a linear and isometric transformation between all functions x of V_{λ}^{c} and a vector subspace of functions y of $L(1, \infty)$. Hence, by the Hahn-Banach extension theorem, the general linear functional in V_{λ}^{c} is given by an equation of the form

$$f(x) = \int_1^\infty \alpha(t) t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u x(u) du,$$

where $\alpha(t) \in M(1, \infty)$. Since $\int_1^\infty |x(u)| du < \infty$ when $x(u) \in V_{\lambda}^c$, we can change the order of integration and then obtain the required result by putting $h(t) = \Gamma(\lambda) t^{-\lambda-1} \alpha(t) \quad (t \ge 1).$

Proof of (b). The equation

$$y(w) = \int_{1}^{w} t^{-\lambda - 1} dt \int_{1}^{t} (t - u)^{\lambda - 1} u \, x(u) \, du \quad (w \ge 1)$$

defines a linear and isometric transformation between all functions x of S_{λ}^{c} and a vector subspace of functions y of F. Hence the general linear functional in S_{λ}^{c} is given by an equation of the form

$$f(x) = \int_1^\infty d\alpha(w) \int_1^w t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u x(u) du + \gamma \int_1^\infty t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u x(u) du,$$

where $\alpha(w) \in BV(1, \infty)$ and γ is a constant. Since $\int_1^{\infty} |x(u)| du < \infty$ when $x(u) \in S_{\lambda}^c$, we can change the order of integration and then obtain the required result by putting

$$h(t) = \Gamma(\lambda) t^{-\lambda-1} \left\{ \gamma + \int_t^{\infty} d\alpha(w) \right\} \quad (t \geqslant 1).$$

LEMMA* 2. (a) If $x(t) k(t) \in B$ whenever $x(t) \in V_{\lambda}$, then (i) $k(t) \in M(1, \infty)$, (ii) the functional

$$f(x) = \int_{1}^{\infty} x(t) \, k(t) \, dt$$

is linear in V_{λ}^c for some $c \geqslant 1$.

(b) Replace V by S.

Since $S_{\lambda} \supset V_{\lambda}$, result b(i) follows from a(i) which has been established elsewhere †.

Proof of a(ii). Since $k(t) \in M(1, \infty)$, f(x) is defined and additive in V_{λ}^{c} for all $c \ge 1$. Suppose there is no $c \ge 1$ for which f(x) is linear in V_{λ}^{c} .

Then we can define by induction a sequence of functions $\{x_n\}$ and an increasing unbounded sequence of real numbers $\{c_n\}$ as follows:

Let $c_0 = 1$ and suppose that $c_1, c_2, ..., c_{n-1}, x_1, x_2, ..., x_{n-1}$ have been defined and that $x_r \in V_{\lambda}^{c_{r-1}}$ for r = 1, 2, ..., n-1. Since f(x) is not linear in $V_{\lambda}^{c_{n-1}}$, there is a function x_n such that*

$$x_n \in V_{\lambda}^{c_{n-1}}$$
, $||x_n|| < 2^{-n}$ and $f(x_n) > 1$.

Let

$$c_n = 2c_{n-1} + \sum_{r=1}^n \int_1^\infty u |x_r(u)| k(u) |du.$$

Now define a function x(t) by putting

$$x(t) = x_1(t) + x_2(t) + \dots + x_n(t)$$

when $1 \leq t < c_n$ and $n = 1, 2, \ldots$

Then, for any $\mu \geqslant 1$ and n = 1, 2, ...,

$$\int_{1}^{c_{n}} t^{-\mu-1} dt \int_{1}^{t} (t-u)^{\mu-1} u \, x(u) \, k(u) \, du$$

$$= \sum_{r=1}^{n} \int_{1}^{c_{n}} t^{-\mu-1} dt \int_{1}^{t} (t-u)^{\mu-1} u \, x_{r}(u) \, k(u) \, du$$

$$= \sum_{r=1}^{n} \int_{1}^{\infty} t^{-\mu-1} dt \int_{1}^{t} (t-u)^{\mu-1} u \, x_{r}(u) \, k(u) \, du$$

$$-\sum_{r=1}^{n}\int_{c_{n}}^{\infty}t^{-\mu-1}dt\int_{1}^{t}(t-u)^{\mu-1}u\,x_{r}(u)\,k(u)\,du$$

$$= \frac{1}{\mu} \sum_{r=1}^{n} f(x_r) - \frac{1}{c_n} \sum_{r=1}^{n} \int_{1}^{\infty} u |x_r(u)| k(u) |du \geqslant \frac{n}{\mu} - 1.$$

Hence $\int_{1}^{\infty} x(u) k(u) du$ is not bounded (C, μ) for any $\mu \geqslant 1$ and so x(u) k(u) is not in B.

On the other hand, for n = 1, 2, ...,

$$\int_{1}^{c_{n}} t^{-\lambda - 1} dt \left| \int_{1}^{t} (t - u)^{\lambda - 1} u \, x(u) \, du \right| \leq \sum_{r = 1}^{n} \int_{1}^{c_{n}} t^{-\lambda - 1} dt \left| \int_{1}^{t} (t - u)^{\lambda - 1} u \, x_{r}(u) \, du \right|$$

$$\leq \sum_{r = 1}^{n} ||x_{r}|| < \sum_{r = 1}^{n} 2^{-r} < 1,$$

and hence $x(t) \in V_{\lambda}$.

Since this contradicts the hypothesis, the required result is established.

^{*} Cf. Sargent (4), Lemma 4.

[†] Borwein (2), Lemma 10.

^{*} Cf. Sargent (4), Lemma 3.

Proof of b(ii). We can proceed as above, with S in place of V, up to and including the statement:

$$x(u) k(u)$$
 is not in B;

and then, to complete the proof, obtain a contradiction as follows.

Let s be an arbitrary positive integer. Then

$$\begin{split} & \overline{\lim}_{\substack{w \to \infty \\ v \to \infty}} \left| \int_v^w t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u \, x(u) \, du \, \right| \\ & \leqslant \overline{\lim}_{\substack{w \to \infty \\ v \to \infty}} \left\{ \sum_{r = 1}^s \left| \int_v^w t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u x_r(u) \, du \, \right| \right. \\ & \qquad \qquad + \sum_{r = s + 1}^\infty \left| \int_v^w t^{-\lambda - 1} dt \int_1^t (t - u)^{\lambda - 1} u \, x_r(u) \, du \, \right| \right\} \\ & \leqslant 2 \sum_{r = s + 1}^\infty \left\| |x_r|| < 2 \sum_{r = s + 1}^\infty 2^{-r} = 2^{1 - s}. \end{split}$$

Hence $x(t) \in S_{\lambda}$.

LEMMA 3. If $c \ge 1$, r > 0 and $x(t) \in L(1, w)$ for all w > 1, then a necessary and sufficient condition for x(t) to be in V_{λ} is that

$$\int_{c}^{\infty} t^{-\lambda - r} dt \left| \int_{c}^{t} (t - u)^{\lambda - 1} u^{r} x(u) du \right| < \infty.$$

This follows from a result established elsewhere*.

LEMMA 4. If
$$\lambda > 1$$
 and $x(t) \in V_{\lambda}$, then $t^{-3} \int_{1}^{t} u^{2} x(u) du \in V_{\lambda-1}$.

This also follows from the above-mentioned result.

LEMMA 5. If
$$x(t) \in V_{\lambda}$$
, then $tx(t) = o(1) | C, \lambda + 1 | as t \to \infty$.

This well-known result follows from the identity

$$t^{-\lambda-1} \int_{1}^{t} (t-u)^{\lambda} u \, x(u) \, du = t^{-\lambda} \int_{1}^{t} (t-u)^{\lambda} x(u) \, du - t^{-\lambda-1} \int_{1}^{t} (t-u)^{\lambda+1} x(u) \, du$$
 $(t \ge 1).$

4. We shall now prove two theorems; the first of these includes both necessity parts of Theorem 1 and the second is simply a restatement of the sufficiency part of Theorem 1(a).

THEOREM* 2. (a) If $x(t)k(t) \in B$ whenever $x(t) \in V_{\lambda}$, then there is a number $c \ge 1$ such that

(i) $k(t) \in M(1, c)$,

(ii)
$$\frac{k(t)}{t} = \frac{1}{\Gamma(\lambda)} \int_{t}^{\infty} (u-t)^{\lambda-1} h(u) du \ p.p. \ in \ (c, \infty),$$

where $u^{\lambda+1}h(u) \in M(c, \infty)$.

(b) Replace V by S, and M in (ii) by BV.

Parts a(i) and b(i) follow from the corresponding parts of Lemma 2.

Proof of a(ii). In view of Lemmas 1(a) and 2(a) there is a number $c \ge 1$ such that, for all x(t) in V_{λ}^{c} ,

$$\int_{1}^{\infty} x(t) k(t) dt = \frac{1}{\Gamma(\lambda)} \int_{1}^{\infty} t x(t) dt \int_{t}^{\infty} (u-t)^{\lambda-1} h(u) du,$$

where $u^{\lambda+1}h(u) \in M(1, \infty)$. The required result follows since, for arbitrary w > c, V_{λ}^c contains the characteristic function of the interval [c, w].

Proof of b(ii). Replace (a) by (b), V by S and M by BV in the above proof.

THEOREM 3. If $x(t) \in V_{\lambda}$ and, for some number $c \geqslant 1$,

(i) $k(t) \in M(1, c)$,

(ii)
$$\frac{k(t)}{t} = \frac{1}{\Gamma(\lambda)} \int_{t}^{\infty} (u-t)^{\lambda-1} h(u) du \quad p.p. \quad in \quad (c, \infty),$$

where $u^{\lambda+1}h(u) \in M(c, \infty)$, then $x(t) k(t) \in V_{\lambda}$.

Write, for $t \geqslant c$, $\mu > 0$,

$$g(t)=t^2x(t),$$

$$g_{\mu}(t) = \frac{1}{\Gamma(\mu)} \int_{c}^{t} (t-u)^{\mu-1} g(u) du;$$

and let

$$H = \overline{\text{ess. bound }} t^{\lambda+1} |h(t)|.$$

Note that $x(t)k(t) \in L(1, w)$ for all w > 1 and so, by Lemma 3, it is sufficient to prove that

$$\int_{c}^{\infty} t^{-\lambda-1} dt \left| \int_{c}^{t} (t-u)^{\lambda-1} g(u) \frac{k(u)}{u} du \right|$$

^{*} Borwein (3), Theorem 1 with $\rho = -r$, $\alpha = \lambda$.

^{*} Version (b) of this theorem is slightly more general than Theorem 1 in Sargent (4).

is finite. Further, since $x(t) \in V_{\lambda}$, we have, by Lemma 3, that

$$\int_{c}^{\infty} t^{-\lambda-2} |g_{\lambda}(t)| dt < \infty.$$

Case 1. Suppose that $0 < \lambda < 1$, and write, for t > v > c,

$$Q(v, t) = \frac{1}{\Gamma(\lambda)} \int_{c}^{v} (v-u)^{\lambda-1} (t-u)^{\lambda-1} g(u) du.$$

It has been shown* that, for almost all v in (c, t),

$$|Q(v,t)| \leq (t-v)^{\lambda-1} |g_{\lambda}(v)| + (t-v)^{\frac{1}{2}\lambda-1} \int_{c}^{v} (t-w)^{\frac{1}{2}\lambda-1} |g_{\lambda}(w)| dw.$$

Hence

$$\begin{split} &\int_{c}^{\infty}t^{-\lambda-1}dt\left|\int_{c}^{t}(t-u)^{\lambda-1}g(u)\frac{k(u)}{u}du\right| \\ &=\frac{1}{\Gamma(\lambda)}\int_{c}^{\infty}t^{-\lambda-1}dt\left|\int_{c}^{t}(t-u)^{\lambda-1}g(u)du\int_{u}^{\infty}(v-u)^{\lambda-1}h(v)dv\right| \\ &=\int_{c}^{\infty}t^{-\lambda-1}dt\left|\int_{c}^{t}h(v)Q(v,t)dv+\int_{t}^{\infty}h(v)Q(t,v)dv\right| \\ &\leqslant H\int_{c}^{\infty}v^{-\lambda-1}dv\int_{v}^{\infty}t^{-\lambda-1}|Q(v,t)|dt+H\int_{c}^{\infty}t^{-\lambda-1}dt\int_{t}^{\infty}v^{-\lambda-1}|Q(t,v)|dv \\ &=2H\int_{c}^{\infty}v^{-\lambda-1}dv\int_{v}^{\infty}t^{-\lambda-1}|Q(v,t)|dt \\ &\leqslant 2H\int_{c}^{\infty}v^{-\lambda-1}|g_{\lambda}(v)|dv\int_{v}^{\infty}(t-v)^{\lambda-1}t^{-\lambda-1}dt \\ &+2H\int_{c}^{\infty}v^{-\lambda-1}dv\int_{v}^{\infty}(t-v)^{\frac{1}{2}\lambda-1}t^{-\lambda-1}dt \\ &=\frac{2H}{\lambda}\int_{c}^{\infty}v^{-\lambda-2}|g_{\lambda}(v)|dv \\ &+2H\int_{c}^{\infty}|g_{\lambda}(w)|dw\int_{w}^{\infty}(v-w)^{\frac{1}{2}\lambda-1}v^{-\lambda-1}dv\int_{v}^{\infty}(t-v)^{\frac{1}{2}\lambda-1}t^{-\lambda-1}dt \\ &=2H\{\lambda^{-1}+B(\frac{1}{2}\lambda,1+\frac{1}{2}\lambda)B(\frac{1}{2}\lambda,2+\lambda)\}\int_{c}^{\infty}v^{-\lambda-2}|g_{\lambda}(v)|dv<\infty. \end{split}$$

The result in this case follows.

Case 2. Suppose that $\lambda = 1$. The required result is now obtained from the following inequality:

$$\begin{split} \int_c^\infty t^{-2} \, dt \, \Big| \int_c^t g(u) \, \frac{k(u)}{u} \, du \, \Big| &= \int_c^\infty t^{-2} \, dt \, \Big| \int_c^t g(u) \, du \, \int_u^\infty h(v) \, dv \, \Big| \\ &\leqslant H \int_c^\infty t^{-2} \, dt \, \int_c^t v^{-2} |g_1(v)| \, dv + H \int_c^\infty t^{-2} |g_1(t)| \, dt \, \int_t^\infty v^{-2} \, dv \\ &= 2H \int_c^\infty v^{-3} |g_1(v)| \, dv < \infty. \end{split}$$

Case 3. Suppose that $\lambda > 1$, and assume the result with λ replaced by $\lambda - 1$. Suppose further, without any loss in generality, that x(t) = 0 for $1 \le t \le c$.

Let $p(t) = \frac{t}{\Gamma(\lambda - 1)} \int_{t}^{\infty} (u - t)^{\lambda - 2} u h(u) du$ when t > c, p(t) = 0 when $1 \le t \le c$, and note that, for almost all $t \ge c$,

$$k(t) = \frac{t}{\Gamma(\lambda - 1)} \int_{t}^{\infty} (u - t)^{\lambda - 2} du \int_{u}^{\infty} h(v) dv.$$

Then it is easily verified that, for $t \ge c$,

$$\begin{split} \int_{1}^{t} x(u) \, k(u) \, du &= \int_{1}^{t} g(u) \, u^{-2} \, k(u) \, du \\ &\equiv t^{-2} g_{1}(t) \, k(t) + (2 - \lambda) \int_{1}^{t} u^{-3} g_{1}(u) \, k(u) \, du + \int_{1}^{t} u^{-3} g_{1}(u) \, p(u) \, du. \end{split}$$

Now $u^{\lambda} \cdot uh(u) \in M(c, \infty)$, $u^{\lambda} \int_{u}^{\infty} h(v) dv \in M(c, \infty)$ and so both k(t) and p(t) satisfy the hypotheses of k(t) with λ replaced by $\lambda-1$. Further, since $x(u) \in V_{\lambda}$, we have, by Lemma 4, that $u^{-3}g_{1}(u) = u^{-3} \int_{1}^{u} v^{2}x(v) dv \in V_{\lambda-1}$. Thus, by the assumption, $u^{-3}g_{1}(u)p(u) \in V_{\lambda-1}$, $u^{-3}g_{1}(u)k(u) \in V_{\lambda-1}$ and hence, by Lemma 5, $t^{-2}g_{1}(t)k(t) = o(1)|C, \lambda|$ as $t \to \infty$.

It follows that $x(u) k(u) \in V_{\lambda}$ and the result in this case is thus established by induction from the two previous cases.

This completes the proof of the theorem.

References.

- 1. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).
- 2. D. Borwein, Proc. London Math. Soc. (3), 1 (1951), 308-26.
- 3. _____, Journal London Math. Soc., 25 (1950), 289-302.
- 4. W. L. C. Sargent, Journal London Math. Soc., 27 (1952), 401-13.

The University,

St. Andrews.

^{*} Borwein (2), inequality (6.7): note that this differs from the required inequality by a factor $\Gamma(\lambda)$ in the left-hand side and that a suitable value for the constant M is $\max\{\Gamma(\lambda), (1-\lambda)^{\frac{1}{2}}\Gamma(\lambda+1)\} = \Gamma(\lambda)$ ($0 < \lambda < 1$).