NOTE ON SUMMABILITY FACTORS

D. BorwEIn*,

i

[Eaxtracted from the Jowrnal of the London Mathematical Society, Vol. 29, 1954.]

L. Introduction. Tt is assumed throughout that A> 0 and that all
functions are real. The main object of this paper is to establish version
(a) of the following theorem.

g el

TuEOREM 1. (a) In order that J z(t) k(t) dt be summable | C, A| when-
]\

ever J 2(t) dit is summable |C, A| it is necessary and sufficient that, for some
1

constant ¢ = 1,
(1) k(t) be measurable and essentially bounded in (1, ¢),

(i) @ = _;)T) f (u—tPLh(w)du p.p. in (6, o),

where uML h(u) is measurable and essentially bounded in (c, co).

(b) Replace |C, A| by (C, \) and « essentially bounded  in (ii) by of
bounded variation *’.

Version (b) of the theorem has heen proved by Sargentt. We shall,
however, give a somewhat simpler proof of the necessity part of this result.
There are results} similar to the above which involve the additional

* Received 14 July, 1953; read 19 November, 1953.

T The result as stated here follows from Lemma 5, Theorern 2 and the proof of
Theorem 1 in Sargent (4).

] Fora|C, a | result see Borwein (2) where references are given to (O, A) results and
to series analogues. Further references appear in Sargent (4).
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hypothesis that the A-th derivative of k(f) exists and is absolutely con-
tinuous in [1, w] for all w = 1.

2. Notation and some preliminary results. Let z(u) be integrable L in
every finite interval in (1, c0). Then, for w>1,

jw (1—- %)‘\m('u.) T wa(u)du jw (1- %)H Sy

1 1 u

w i
=A 5 trildl S (t—u)* 1 uz(u) du.
1 1

Hence j z(u)dy is

1
(i) summable (C, A) if and only if j 2 ldt Y(thu)"*lux(u)d’u i
1 i
convergent ;

(ii) summable | C, A| if and only if J #h=1dy
= 1

jz (t—uP 1wz (u) du‘ <!

(iii) bounded (C)if and only if jwt—"-ldt Y (t—w)*—1uz(w)du is bounded
1 i1

in (1, o) for some p > 0.

We shall be concerned with the following function spaces (it is to be
assumed that 1 <a <<b << 0):

M(a, b): the space of functions measurable and essentially bounded
in (a, b).

L(a, b): the normed vector space of functions x(f) integrable L in
(@, b), the norm being defined by the equation

The general linear functional in this space is given by an equation of the
form*

1) = =) a0ar,
where «(t)e M(a, b). s foth

BV (a, b): the space of functions having bounded variation in [a, b).

F: the normed vector space of functions x(f) continuous in [1, o) and
tending to finite limits as {—co, the norm being defined by the equation

| — bowmd | a(t) .

=

* Banach (1), 65.
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The general linear functional in this space is given by an equation of the
form#*
@)= | @(dott) -y lim (1),
1k i

where «(t)e BV (1, o) and y is a constant independent of .

B: the spacet of functions x(t) such that j z(t)di is bounded (C).
1

' .
8, : the normed vector space of functions z(¢) such that 5 x(t) di is
1

summable (C, A), the norm being defined by the equation

||z||= bound
wz1

Sw i E (t—u)tux(u)du l ;

1

S,#: the vector subspace of S, which consists of all functions ()
such that 2(f) = 0 for t < a and tz(t) e L(a, o).

V,: the normed vector space of functions x(¢) such that j x(t)dt is
1
summable | C, A|, the norm being defined by the equation

||| = L {14 l Yl (t—u) L o () s

V,2: the vector subspace of ¥, which consists of all functions z(f)
such that x(¢) = 0 for ¢t < a and fx(t)e L(a, ).

3. We shall require the following lemmas.

LeMMA © 1. (a) For ¢ =1, the general linear functional in the space
V.t is given by an equation of the form

o0

flz) = ﬁ L walu)du 5: (t—w)*1h(t) dt,

where tM1h(t)e M (1, co).
(b) Replace V by S and M by BV.

Proof of (a). It is easily seen that the equation

y(t) =7 Yl (t—u)tuz(u)du (t=>1)

* Banach (1), 59-60; see also Sargent (4), Lemma 1.

t Tt is implicit in the definition of this space and of S, and V, that they are contained
in L{1, w) whenever 1 << w < o,

I ¢f. Sargent (4), Lemma 2,
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defines a linear and isometric transformation between all functions x of
V,c and a vector subspace of functions y of L(1, ). Hence, by the
Hahn-Banach extension theorem, the general linear functional in V,°
is given by an equation of the form

w) Loz (w) du,

i) 51 alt) - 1dt S

where o(t)e M (1, o). Since& |#(u)|du < o when wz(u)eV,’, we can
1

change the order of integration and then obtain the required result by
putting
R(t)=T@A) 2 1alt) (E=1).

Proof of (b). The equation

yw=|’

1

£ Y (t—uptuz@)du (w>1)
1

defines a linear and isometric transformation between all functions x of S,
and a vector subspace of functions y of F. Hence the general linear
functional in 8,¢ is given by an equation of the form

o f i) S'f A1dg j’ (t— )Pt we(u)du

1 +yj t—h—ldtf (t— P Lo z(u) du

where «(w)e BV (1, ) and y is a constant. Since S | 2(u)| du << 0 when
1

x(u)e 8,°, we can change the order of integration and then obtain the
required result by putting

h{t) = T -1 {y—}-fdm(w)} (t>1).

LeMma* 2. (a) If 2(
(ii) the fumtioml

t)e B whenever z(t)& V,, then (i) k(t)e M (1, o),

18 linear in V,° for some ¢ = 1.
(b) Replace V by 8.

Since 8, D V,, result b(i) follows from a(i) which has been established
elsewheref.

Proof of a(ii). Since k(t)e M (1, o), f(x) is defined and additive in
o for all ¢ 1. Suppose there is no ¢ > 1 for which f(x) is linear in V,°.

* Cf. Sargent (4), Lemma 4.
1 Borwein (2), Lemma 10.
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Then we can define by induction a sequence of functions {z,} and an
increasing unbounded sequence of real numbers {c,} as follows:

Let ¢, = 1 and suppose that ¢, €y, ..., €41, Ty, Tgs -2 ; have been
defined and that z,e Vi forr=1,2, .., n—l. Since f(x) is not linear in
Ve, there is a function z, such that*

Ly eV, [lzall< 2 and fz,) > 1.

Let £ =20 1—[— E 5 u|z, k(u)|du.

Now define a function z(f) by putting

2(t) = 2, () 24 (£) ...+, (F)

when 1 <t <¢, and n=1, 2, ...,
Then, foranyp =1landn=1,2, ...,

Sc"rwl di S‘ (t—w)* 1w (u) b(u) du

= 3 e | ot
r=1.J1 1
=5 r t+-1dt Y (t—u)tuw,(u) k(w) du
r=1 J1 1
. 5 o -1dtj (t—u)p wa, (u) k() du
=1
S Smuwr(%)k(u)dfbg (f—up—tetdl— 5 j t—ZdtS h i Rl di
r=1J1 Y% PR :

Hence 5 a(w) k(u) du is not bounded (C, ) for any p > 1 and so xz(u) k(w)
1

is not in B.
On the other hand, for n=1, 2, ...,

Cn
(Fioona
1

Y (t—u) Tux(u)du

0 Cn
& & j (-1dt
1

r=1

ﬁ (t—u)Luz,(u)du

< 2 2 <1,

n M;s

and hence z(t)eV,.
Since this contradicts the hypothesis, the required result is established.

* Cf. Sargent (4), Lemma 3.
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Proof of b(ii). We can proceed as above, with S in place of V, up to
and including the statement:

x(u) k(u) is not in B,

and then, to complete the proof, obtain a contradiction as follows,
Let s be an arbitrary positive integer. Then

lim j t"‘—ldtJ (t—u)tua(u )du‘
W—=o0 v 1
= AN} 8 w t
< Im {z 5 t-'\-lcltj (t—u)’—lux,(u)du’
w—>w \r=1 1

!

e 51 J

r=g+1

<2 X |)<2 X 2r=01s,
1'::;+1'= +-1

r 14y Y (—uP Lo, (u)du
bl 1

Hence z(t)e S,.

Lemma 3. If ¢=1, r>0 and z()e L(1, w) for all w>1, then a
necessary and sufficient condition for x(t) to be in V, is that

[

c

4
j (t—w)Lur x(u) du ’ <7 a0,
This follows from a result established elsewhere*.

]
Levma 4. If A>1 and z(t)eV,, then t—3j u?
g

x(u)dueV,_;.

This also follows from the above-mentioned result.

Lemmva 5. If 2(t)eV,, then tx(f) 1)|C, A-1] as t—co.

This well-known result follows from the identity

f =l Y (t—u) ww(w)duw =t Jt (t—u)x(u) du—i>-1 Y (t—u) () du
1 1

(12 1h

4. We shall now prove two theorems; the first of these includes both
necessity parts of Theorem 1 and the second is simply a restatement of
the sufficiency part of Theorem 1(a).

* Borwein (3), Theorem 1 with p = —#, a=A.
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TueorEM* 2. (a) If z(t)k(t)e B whenever x(t)eV,, then there is a
number ¢ = 1 such that

(i) k(2)eM(1, o),

i) 50 = 15 |, @b p. in o, o),

where w1h(u)e M (e, o).
(b) Replace V by 8, and M in (ii) by BV.
Parts a(i) and b(i) follow from the corresponding parts of Lemma 2.

Proof of a(ii). In view of Lemmas 1(a) and 2(a) there is a number
¢ =1 such that, for all z(z) in V,°,

fx(t)k(t)dtzrb)j mt)dtj (u— )1 h(w) du,

where #*1h(u)e M (1, cv). The required result follows since, for arbitrary
w > ¢, V,¢ contains the characteristic function of the interval [c, w].

Proof of b(ii). Replace (a) by (b), V by § and M by BV in the
above proof.

TaEOREM 3. If z(t)eV, and, for some number ¢ =1,
(i) k(t)e M(L, o),

(ii) W) ch)j (u—ty"1h(u)du pp. in (c, ),

where WML h(u)e M (c, ), then x(t) k(t)e V,.
Write, for ¢ ¢, u >0,
g(t) = x(t),
u() = 15 | t—wrta(du;

and let H = ess. bound "1 A(t)].

t=c

Note that x(t) k(t)e L(1, w) for all w>1 and so, by Lemma 3, it is
sufficient to prove that

jw t-1 0t y 5:(15 wP-1g(u) (“) du

* Version (b) of this theorem is slightly more general than Theorem 1 in Sargent (4).
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is finite. Further, since z(t)e V,, we have, by Lemma 3, that

J’ £2=2( g, (8) | dt < co.

c

Case 1. Suppose that 0 < A < 1, and write, for i >v>¢
1 v
Q. 9= || (0= —up-1g () .
It has been shown#* that, for almost all # in (¢, t)
| €, )] < (t—0)2| gy (0) |+ (t— )2 r(t—w)’”“llga(w)ldw-

Hence
j [t dt”f (t—up1g(u) M du'
[ [ u

1

= ),

L (t—uP1g () du r (0— )1 h(n) do

[ra

Lh(fv)Q(v, t) dvt fﬁ(@) Q(t, v)dv

o0

<HJ

[
c

v 1y J 1 Q(v, #)|di+H r 1 J "1 @, )| dv

o0

v>2—1dy J:O t—-J\—l, Q('U, t) ! dt

¢

S| g, 0)ld | —optiera

420 J w—ldvj (t—w)r=1 471 gy Jv(v—w)*"—lj g (w) | dw
28 [ c
= L v 2| gy (v) | do
t-2H J' | g () | deo J (v— 1)1 yr1 gy r (t—v)P—14-2-1 gy

= 2H {34+ B(A, 14+32) B3\, 24-4)) J:O-v""—ﬂl an(v)|dv < co.

The result in this case follows,

& . 0 . 3
" chi);wem (2)', inequality (6.7): note that this differs from the required inequalit;
¥ & factor (A} in the left-hand side and that a suitable value for the constant Jf .
max {T(A), (L—A)t r(a+ 1}=r(A) (0<a< 1). T 4
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Case 2. Suppose that A= 1. The required result is now obtained from
the following inequality :

r t—2dt Sig(u) k—gjb—) du ’ =£o t2dt

c

o
U

J:g(u)duj h{v) do

<= H f 2dt rc v2|g,(v)|dv+H f 2] g, (2) | dt r v—2dv

t
L zﬂj o8] g, (0) | do < oo

Case 3. Sujopose that A > 1, and assume the result with A replaced
by A—1. Suppose further, without any loss in generality, that z(f)=0
for 1 <t <e.

¢

Let p(t)= mjt (u—t)2uh(u)du when t>e¢, p(t)=0 when

1 <t <e¢, and note that, for almost all ¢ > ¢,

k(t) = F—(F\%l) f (w—t)P2du Eh('f)) dv.

Then it is easily verified that, for ¢ > ¢,

y x(uw) k(u)du = g: g(u)u2k(u)du

1 1

=12, O RO+2—) | 00,0 o) du-+ | wtg,(0) pl) .

Now w*.uh(u)e M (c, ), u"j kh(v)dve M (¢, ) and so both k(f) and

|

i‘- w

F’ p(t) satisfy the hypotheses of k(¢) with A replaced by A—1. TFurther,

E since z(u) e V,, we have, by Lemma 4, that 43¢, (u) = »=> r via(v)dveV,_;.
i

| Thus, by the assumption, w3g,(u)p(u)e Vi, w3g,(u)k(u)eV,, and

O hence, by Lemma 5, t=2¢,(t) k(t) = o(1)| C, A| as > co.

It follows that z(u)k(u)e ¥V, and the result in this case is thus estab-

lished by induction from the two previous cases.
This completes the proof of the theorem.
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