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Multiplication Theorems
for Strong Norlund Summability

D.BorwEIN and F. P.Cass

1. Introduction
In [1] a definition of strong Norlund summability was given, and some
of its properties were investigated. In this paper, some theorems concerning
the strong Norlund summability of the Cauchy product of two given series
are established, which generalise known theorems about strong Cesaro
summability.

2. Preliminaries

Throughout this paper H, H, etc. will denote positive constants, which
will not necessarily be the same at different occurrences. Let {p,} be a sequence
of real numbers with p,>0 and p,=0 for all n>0, and let

B=XYp.
r=0

Definition 1. Let ) a, be a given series. Define
r=0

1.z 1

. =— _ i —

n P Z Pn—r S R,

nr=0 r

P_,a, (n=0,1,2,..), (2.1)

i,

where
n
B i
r=0

If t,— s as n— oo, we shall write

ar=S(N= pn)

s

r=0

or s,—5(N, p,).
This is the standard definition of Nérlund summability (N, p,). See Tamar-
kin [8], Norlund [7] or Hardy [4, p.64].

Definition 2. If t,=0(1) we say ) a, is bounded (N, p,), where t, is defined
by (2.1). =

Definition 3. A method of summability is regular if it sums every conver-
gent series to its ordinary sum.

The method (N, p,) is regular if and only if p,/B=0(1). See Hardy [4,
Theorem 16, p. 64].
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Definition 4. If P and Q are methods of summability, Q is said to include P
(written P=-Q) if every series summable by the method P is also summable
by the method Q to the same sum. If, further, P includes Q, P and Q are said
to be equivalent (written P<(Q).

If p,>0 for all n=0 and } q, is a given series, we define t2 by
r=0

n anrr

pnr

(n=0,1,2,...). (2.2)

Definition 5. Strong Norlund Summability [N, p,],, 1> 0.
Let (N, p,) be a Norlund method with p,>0 for all n=0, and let } a,

r=0
be a given series. We shall say that Z a, is strongly summable (N, p,) with

index A to s, if £=0

P Z p.t7 =sl*=o(1). (2.3)

nr=0

We shall denote this by
Z arIS[N9 pn]l or Sn = S[Ns pn]i'
r=0

This is the definition of strong Norlund summability given in [17, except
that in [1], the sequence {p,} is allowed to be a sequence of complex numbers.
It is proved in [1] that for >0 and >0, [C,a],; < [N, £~ 1],, where [C,«],
denotes the strong Cesaro method of summability with index /A, as defined
in [2] for example. See also Winn [9]. For the remainder of this paper we
shall use the notation “[C, &],” to denote the method of summability [N, 2717,
(>0, 1=>0).

Definition 6. Let (N, p,) be a Norlund method with p,>0 for all =0, and
let Z a, be a given series. We shall say that Z a, is strongly bounded (N, p,)

r=0 r=

with index 1 or Z a, is bounded [N, p,],, if

7 5> B i1 =0().

nr=0

Definition 7. Absolute Néorlund Summability |N, p,|.
Let (N, p,) be a Norlund method with p,>0 for all n=0 and let ) a,

oW r=0
be a given series. We shall say that > a, is absolutely summable (N, p,) to s if
r=0

©
Z Itn_tn*1|<oo
=1
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where s= lim t,. We denote this by

¥ a.=3|N,ps
r=0

This is the definition of absolute Nérlund summability given by Mearsin [5].

Definition 8. The method (N, p,) is abselutely regular if whenever Z a, 18
absolutely convergent, it is also summable [N, p,|. r=0

See Mears [5] and Miesner [6].

3. Some Known Results

Let } c, denote the Cauchy product of the series 3 a, and ) b,, ie.

r=0 n=0 n=0
n

=Y ab,_,. (3.1
v=0
The following propositions (), () and (y) about Cesaro summability have
been established; the first two by Winn in [9], and the third by Boyd in [3].
(@) If " %
Y a,=s[C,k]; and 3 b,=t(C,)),
n=0 n=0
where k>0 and 1=0, then
Y c,=st(C,k+I).
n=0
® 1f i )
Y, a,=s[C,k], and Y b,=t[C,I],,
n=0 n=0

where k>0 and 1>0, then

s

c,=st[C, k+1];.

0

o) If

where k>0,

a

3 a=a[C K],
o n=0
Y b, is absolutely convergent with sum t, then
=0

Y ¢,=st[C,kl,.
rn=0

Propositions (), (#) and (y) are special cases of our Theorems 2, 4 and 6
respectively.

4. Main Theorems

Suppose that {p,} and {gq,} are sequences of real numbers with py,=>0,
40>0, p,=0 and ¢,=0 for all n=>0. Let

=3 P =Y q,
r=0 =

r=0

3%
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Also let,
n n
=12 Pvdu-y and R,=Y 1,
v=0

v=0
then #,>0 and 1,20 for n>0.

Given any sequence {{,} let {(x) denote the formal power series > {,x".
n=0

Theorem 1. If p, >0 for all n, qo >0,9,=0 foralln>0,1=1,(N, q,) is regular,
Z a,=0[N, p,];
and Z b, is bounded (N, gq,,), then
n= Z -

Proof. Using Hélder’s inequahty, it is easy to show that for A>1, [N, p,],=
[N, p.l; (see [2, Theorem 1]). Thus it is sufficient to prove Theorem 1 for the

case A=1. Let {
= Z Qn—vbv

nyv=20

Zanv

HV—

and

Now R, v, is the coefficient of x" in the series
z Pn tﬁ xnz QnWnxn=p{x)a(x)(1*x)_IQ(x)b(x)
n=0 n=0
=p(x)q(x)(1—-x)" " c(x)=R(x) c(x).

Thus .
Rn Un= Z pv tf anv Wn,‘,
=0
and so, '
R, ()= 3, o8] s Wy
v=0
Since by hypothesis, .
Y o lifl=o(B)
and B
|wa|=0(1),

it follows that
R,|v, |<H): 2 e

v=0

=HZ qufvz prltfl
v=0 r=0

=HY g, 0(B).
v=0
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Since (N, q,) is regular the final sum is o(R,). Thus v,=o0(1), and so

o0
2 C=
P n=0
as required.

Theorem 2. If p,>0 for all n, q,>0, q,=0 for all n>0, Az=1, (N, p,) and
(N, g,) are regular,

Y. a,=s[N,p,]; and Y b,=t(N.q,), then Zc,,zst(N,rn).
n=0 n=0

n=0

Proof. If s=0 the result is an immediate consequence of Theorem 1. Sup-
pose s£0. Let
ay=dy—S, a,=a, for n>0

and
=3 ab,.,,

then e

cp=c,—sb,.
Thus, since

> 4= 0[N, ],
by hypothesis, we have "

> en=0(N,r,)

il

n=0

by Theorem 1. Further, since (N, p,) is regular, (N, g,)= (N, 1) (see Hardy
[4, Theorem 17, p. 65]). Thus

Y by=t(N. ).
Hence, since "
icn:ic;,-i-sf:bn for m=0,1,2, ...,
it follows that -
Y ¢y=st(N,7).
This completes the proof. e
Theorem 3. If p,>0, q,>0 for all n, 221, (N, q,) is regular

Z a _0[N pn]ﬂ

n=40

and Y b, is bounded [N, q,],, then
n=0

=0[N,r1;.

I [~]8
l)
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Proof. Let
1 n
A
vn__z L-yCy
T'" v=0
and
1 n
A
Wn: Z qn—vbv
dn v=0
Now
2 A n a4 ..n E A .
Y rvix'=Y p,tAx"y g, wix"
n=0 n=0 n=0
Thus
n
A 4 4
Bl = 0 B e W
v=0

and so, we have

n A
Jvdi}l“‘{zpv [ [ vl}

Using Holder’s inequality, we find that

n n A—=1
{rnlv,i’l}"é{Zpvitﬂl’lqn-vlw,fwvl"}{zpvqn_v} ;
v=0

Thus

Z gz val't |AQr: vlwn v[)

n=0 v=0

¢ TR A A
valtvl Z qn—v‘wnfvl *
v=0 n=v

Now, by hypothesis

B

Z |IA|J'_‘O(P) and Z QVlw IJ (Qm)'

v=0 v=0

Thus
Y nlvdltsH Z g o

n=0

—HZ i varIt“I'1

v=0 r=0
m
Z m—v 0(R)
=0(R,)
since (N, g,) is regular. Thus
Z N: rn]).

as required.
Theorem 4. If p,>0, q,>0 for all n, A=1, (N, p,) and (N, q,) are regular

Y a,=s[N,p];, and Y b,=t[N,q,],, then Y e,=st[N,nls
n=0 n=0 n=10 '

E

Multiplication Theorems for Strong Norlund Summability 39

Proof. When s=1=0, the result is an immediate consequence of Theorem 3.

Suppose 5+0 and t=0. Let ay=a,—s, a,=a, for n>0 and

=3 a,b,_,,
v=0
then
=0[N. p.];.

Thus by Theorem 3,

Now

since [N, q,];= [N,r,], for A=1 by Theorems 1 and 2 in [1]. Thus
Z Cuzo[Na rn]il
n=0

as required. The case s+0, t+0 is proved similarly by defining by =b,—t
b,=b, for n>0. The proof is now complete.

Theorem 5. If p,>0 for all n, {p,} is a non-decreasing sequence, A= 1,
Z a,=0[N, p, 1,

o0
and Y b, is absolutely convergent, then
n=0

Zocnz 0 [Na pn:[j. s

H

When 2=1 the condition *{p,} is a non-decreasing sequence” may be omitted.

Proof. Let

Uy anvv

pn v=0
Now p, v is the coefficient of x" in the series
2 P X" Y ¢y X"=p(x) c(x)=p(x) a(x) b(x).
r=0 n=0
Thus

- A
= Z Dy tv bnfv:
v=0

and so

n A
{Px Iv,‘?l}”é{ 2 el Ibn-ul} .
v=0



40 D. Borwein and F. P. Cass:

Using Holder’s inequality, we find that
n n P |
{pnv:[}lé{zpnltelilbn—vl}{zpvlbn—vl} N (4'1)
v=0 v=0

Since by hypothesis )" b, is absolutely convergent and {p,} is non-decreasing,
we find B8

n
PV T’"éH{ > pvai‘i‘Ibn-vl}
v=0

We do not need to use the fact that {p} is non-decreasing in the case =1,
since the last sum in (4.1) does not appear when A=1. Now, we have

m m n
L Pl SHY Y p, |t b, |
n=0

n=0 v=0

=HY p,It]1*}, b,

v=0 =V
. AjA
éHl Z pv |Iv| ]
v=0

since Y b, is absolutely convergent. The final term is o (B,) by hypothesis, hence

n=0
m

> PulviP=0(B,)
n=0
50

Zcrr:O[Napn]}. for )“gl
m=0

This completes the proof.
Theorem 6. If p,>0 for all n, B— o, (N, Pn) is absolutely regular,

Zoanzs[N! pn:ll

o0
and Z b, is absolutely convergent with sum t, then

n=0
[+ o)

Y e=st[N,p,],.

n=0

Proof. If s=0, the result is an immediate consequence of Theorem 5. Sup-
pose s+0, and let ay=ay—s, a,=a, for n>0 then

Y a,=0[N,p,],
=0
Let "

n
’ r
Cy Zav bn—vs
v=0
then
cn=c,—5b,,
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and .
Z C;::O[Na pn]ln
n=0

by Theorem 5. Further ) b, is summable |N, P.li by the absolute regularity
of (N, p,). Thus =4

S b,=t[N, p,],
by Theorem 9 'in [1], Henee =

i c,=st[N,p,];.
This completes the proof. "

5. Corollaries to Theorems 2, 4 and 6
Let o be real. Define

(e+1)...(x+n)
St e

o

gp=1, & ’ n=1,2

Given any sequence {v,} we use the notation

so that

The following identities are immediate:

g v, =1, (5.1)

J{Nes

F

n
Prepatie Y ot (5.2
r=0

We shall now suppose that «> — 1, and consider the Norlund methods (N, p5
where p, >0 for all » when a= — 1. These methods of summability were studied
in some detail in [1]. The corollaries stated below include as special cases
propositions («), () and (y) about strong Cesiro summability.

Corollary 2.1. If «>0 or a=0and p,>0 for all n, >0, A =1, (N, p,) is regular,

o0 o0

Y a,=sIN,p%1, and 3 b,=t(C,f), then 3 c,=st(N, ).
b=0 0

n=0 n=

Corollary 2.2. If =0, a>0, A=1, (N, p,) is regular,

a,=s[C,al; and ) b,=t(N,pf), then Y c,=st(N,pt+#).

0 n=0 n=0

s

n
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Corollary 3.1. If >0 or =0 and p,>0 for all n, x>0, 121

Y. a,=s[N,pi], and Y b,=t[C,al,, then ZOC":”[N’IJT&L'

n=0 n=0

Corollary 4.1. If (N, p,) is absolutely regular, B,— co, oc>0,

Z HH:S[N, p:]l
n=0

oo
and Y b, is absolutely convergent with sum t, then

n=0

0
Z Cn=St£N5p:]l'
n=0

To prove Corollary 4.1, one notes that if (N,p,) is absolutely regular,

then (N, pj) is absolutely regular for each «>0, then applies Theorem 4.

—
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