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1. Introduction

[n this paper we give a definition of strong Nérlund summability, and show
that in the case of Cesaro summability our definition is equivalent to the stand-
ard definition of strong Cesaro summability. We answer such questions as:
“If one Norlund method of summability includes another, is the same true of
the associated strong methods ?””. We establish relations between strong Nor-
lund, absolute Nérlund and Nérlund summability. For a certain class of Nor-
lund methods of summability, we construct associated one parameter families
of Nérlund methods, the methods in each family increasing in strength as the
parameter increases. A special case is the family of Cesaro methods of sum-
mability (C, «) with «> —1. Finally we consider a method of summability
(C*, a), known to be equivalent to (C, &) for >0, and use our theorems to
show that the associated strong methods of summability are equivalent.

2. Generalities and Definitions

Throughout this paper, H, H, etc. will denote positive constants, which
will not necessarily take the same value at different occurences.

Suppose throughout that

Sn= iar, si:(n+a) e L G ) ;
i= n n!

Given an arbitrary sequence {w,}, we define
Aw,=w, —w,_, w_,=0.

Let {p,} and {q,} be arbitrary sequences of complex numbers, let
Pn=ZPrs Qn=ZQr=
r=0 r=0
and assume throughout that P, and Q, are non-zero for all values of n. Also let

P¥=

n

D=

gl 8= ZZOJQ.-I-

0

r
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The n-th (N, p,) and n-th (N, g,) transforms of the sequence {s,} are respec-
tively

I .2 I &
2. = =
( 1) In };:1 r=20pr Sp—r Pn r;OPr Ay—p
and
(2.2) u-—l iqs H—E—iQa
. ; Qn r=0 T Qn r=0 S
The series

> a,
r=0
is said to be summable (¥, p,) to s if f, —» 5 as n — co. We denote this by
23 Y. a,=s(N,p) or s,-5(N,p,).
r=0
All limits in the sequel will be taken as the variable tends to infinity, unless
otherwise specified.

We shall also have occasion, in the case that p,+0 and g,+0 for all values
of n, to use the notation

] n
(2.4) t3=p— Zop,.a,,_,
nr=
and
2.5) =LY% ga,,
qn r=0

We note that (2.4) and (2.5) are respectively the n-th (N, 4p,) and n-th (¥, 4 q,)
transforms of the sequence {s,}.

A method of summability is regular, if it sums every convergent series to its
ordinary sum.

If P and Q are methods of summability, Q is said to include P (written
“P=0Q7) if every series summable by the method P is also summable by the
method Q to the same sum. P and Q are said to be equivalent (written “P<>0")
if each method includes the other.

Using standard results, [3, Theorem 2], we find that the Nérlund method
(N, p,) is regular if and only if

(2.6) EF=0{%;)
and
2.7) Dl By =0,

See also [4].
Thus for a regular Norlund method (W, p,), either,

2.8) Y lpl<oo
r=0
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or
(2.9) |P,| = 0.

Since p, and g, are both non-zero, there exist sequences {k,}, {/,} and {y,}
such that,

(2.10) kopo+ - +k,po=d,, A=0,1: 2oy
(2.11) loqu+ -+ 1, 90=0,, n=0,1,2,00,
(2.12) YoPut -+ +7, po=0, n=1,2,3,...,
(2.13) yo=1/po.

Thus

1 n
fy=— o r s
n Pn r;zopr b.’l ¥
if and only if

n
Su: Z}'n—rPrtr'
#=0

Therefore every Norlund transformation is invertible.

The following propositions give necessary and sufficient conditions for
inclusion or equivalence relations to hold between two Norlund methods. The
proofs are closely modelled on proofs given by HARDY [3, Theorems 19 and 21],
but are applicable to a larger class of Nérlund methods than are considered by
HARrDY. In connection with the second proposition see also [4, Corollary 1].

Proposition 1. For Norlund methods (N, p,) and (N, q,), (not necessarily
regular), necessary and sufficient conditions that (N, p,)=(N, q,) are

(2.14) lkol | Pul 4 o+ +1ky| | Po| SH | Q,]

where H is independent of n, and

(2.15) k, ,]Q.,—0,  foreach r.
Proof. Referring to (2.2), we have

(2.16) U= ioc,,',t,,

with ¢, ,=k,_,P,jQ, for r<n and ¢, ,=0 for r>n. cf. [3, Theorem 19].

Since a Norlund method is invertible, (¥, p,)= (N, g,) if and only if the
sequence to sequence transformation (2.16) is regular. A standard result now
yields (2.14) and (2.15). See for example [3, Theorem 2].

Proposition 2. For regular Norlund methods (N, p,) and (N, q,), necessary
and sufficient conditions that (N, p,)<(N, q,) are

(2.17) Ylkl<oo and Y|l |<oco.
r=0 r=0
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Proof. Necessity.
By Proposition 1 both {|P,|/|Q,I} and {|Q,|/|P,|} are bounded. Also by
(2.14),
| P, 4]
| P, |

P _
+ otk el <o im

k
ol +1Kil .

for r<n. Now fixing r, letting » tend to infinity, and using the fact that for a
regular Nérlund method (N, p,), P,_,~ P, for each r, we have

lkol+ - +1k|<Hlimsup(| @, /| P,)=H, <0,

so that
Z |k, |<o0.
n=0
Similarly
b EAE
n=0

and, hence we have (2.17).
Sufficiency.

We now have k,_, -0 for each r, and, because of the regularity of, (¥, g,),
Q.2 HO¥=HQE>0: it follows that (2.15) holds. Also, by (2.6) and its
analogue for the method (¥, g,),

| 1= Qol 1 1] + +|QnHIo|§HFQHIZ|U,
and =

|kl 1Pyl =+ +1ky| |[Po| SH 1Qu] X 1K, 3 11,1
r=0 r=0

Thus (2.14) holds, and hence (N, p,) = (N, g,). Similarly, (N, p,) = (N, q,), and
the proof is complete.

The n-th (N, p,) transform of the sequence {s,} is

1 n
(2.18) T":_I;,,_r;oprs"
Associated with this transform is a method of summability, (N, p,), defined
in the same way as in the case of (N, p,).
Using a standard result [3, Theorem 2], we find that (N, p,) is regular if
and only if (2.6) and (2.9) hold.

Proposition 3. If (N, p,) is regular, p,>0 for all n and either

{p.} is non-decreasing and n<H, Ei)
or "

{pa} is non-increasing and P,/p,<H,(n+1)
then

(N, p)=(N,1).
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Proof. This result is an immediate consequence of a theorem given by
HarDY [3, Theorem 14].

Definitions. 1. Strong summability [N, p,],, A>0.
Let (W, p,) be a Norlund method with p,=0 for all values of n. We shall
say that
2 a
r=0
is strongly summable (N, p,) with index A to s, if

1

(2.19) B,

¥, p =5 =o0(0).

We shall denote this by

ar=s[N1 pn]i or Sn“_"S[Napn:,),'

s

r

Remark. Whenever (2.6) holds,

Z ar=S[N= pn]A
=0

Is

if and only if

(2.20) !

P*

S It =sl=o(1).

We shall take advantage of this result without further comment.
2. Absolute summability | N, p,|,, #>0.
We shall say that

2.4
r=0
is absolutely summable (N, p,) with index, 1, or summable |N, p,|,, if

2.21) >t e, —t, <00,
n=1
When A=1, this definition reduces to the customary definition of absolute
Norlund summability, as given by MEaRrs [5] for example. See also [1].
We recall now the standard definition of strong Cesiro summability
[C, x+1]; and show that is it equivalent to our definition. For A>0, a> —1,
the series

2. a
r=0
is said to be summable [C, « + 1], to s, if

1

z -] A
S —s|*=0(1
nHrZO\S, s|"=o(1)
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where
1 n
a a1
Se=— Y E4_}S,.
8!!

Since the Cesaro method of summability (C, «+1) is the method (N, p,)
with p,=¢;, in order to show that our definition of strong Cesaro summability
as strong Norlund summability is equivalent to the standard definition of
strong Cesaro summability it suffices to observe that (N, 1)<>(N, &%) for a> —1.
This follows from Proposition 3, because {¢} is non-increasing when — 1 < <0,
non-decreasing when o >0, and

g egi~nl(a+1) as n— .

3. Inclusion Theorems

In this section we shall prove certain theorems giving sufficient conditions
for one strong Norlund method of summability to include another. Before
doing so however, we make the following simplifying remark.

Remark. 1f (N, p,) is a Norlund method with p,=0 for all values of », and
{s,} is a sequence, then 7 —s is the n-th (N, 4p,) transform of the sequence
{s,—s}. Thus we have,

> a.=s[N. p];

if and only if s,—s = 0[N, p,],. Hence in order to prove that [N, p,],= [N, g,1,,
it is sufficient to prove that s,—O[N, p,], implies s,—»0[N, ¢,],. For the
remainder of this paper, we shall assume that if (¥, p,) is a Norlund method,
then p,+0 for all values of », unless mention is made to the contrary.

Theorem 1' H(Ns pn):>(N= Qn) [hﬁ’}’[ [N: pn]l = [N, qJﬂ]l'

Proof. Referring to (2.4) and (2.5), we have, for a given sequence {s,},

n
A4 4
qut, = E kr:—r prly.
r=0

Thus
EAICAEDNIMNIFAN S
v=_0
and hence
Z Iqu luf[g Z Z |kv| lpr—thf—vJ
r=0 =0 v=0
eI LI PSRN
Setting

n
4
@.= 2 Ipl 18],
v=0
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we see that
h

n n (pv
(@ INCHILEESWESP IS IR A
r=0 v=0 o i vl

v=

Supposing now, that 5, - 0[N, p,];, we have ¢,/| P,| =0(1). Thus

| o,
———— v —_— = I =
(b) TN VZDII»,,-VHRI P o(1)

provided
[kol | Pah+ -+ 1k, [ | Po|=0(] Q,])
and
lko—yl=0(1Q,]) for each v.

But, by Proposition 1 this is equivalent to our hypothesis (N, p,)= (N, q,). It
follows from (a) and (b) that s, > 0[N, g,],.

Thus

[N‘-' pn]l == [N-: qn]h
and the proof is complete.

Corollary 1. ‘.[f(Na pn)‘:’(Ns qn)’ then [Na pn}l'@’[Ns qn]l'
Theorem 2. If (N, p,)=(N, g,) and

(3.1) 2 kel 1P =0( g, 1),
r=0

then

[N,p]: = [N.q,],  for A>1.
Proof.

r

A
|q,r‘|u:‘|*§( fkmupvurfl).
[0}

=
Using HOLDER’S inequality, we obtain
.

v=0
SHIG Y ey Iyl 112
Thus T
YlaluPSHY, 31k lIp 141

r=0v=0

To complete the proof we now set
DN AR
r=0

and proceed as in the proof of Theorem 1.
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Corollary 2. If OF =0(| 0, ]),

(3.2) ky /@, —0  for eachr
and (3.1) holds, then
[N’ pn]i = [N,q,,]; for A>1.

Proof. By summing both sides of (3.1) and using the fact that Ox=0(0,D
we find that,

n

2 ksl |PI=0(1Q,0),

r=0

which together with (3.2) implies that (N, p,)= (N, g,). The result now follows
from Theorem 2.

Corollary 3. If (N, p,) and (N, q,) are regular Norlund methods with {Ipal}
and {|q, |} non-decreasing, and if (N, p,)<>(N, g,), then

[N,p.]. < [N.q,]x  for A>1.

Proof. By Proposition 2, we know that

> k<o and Y |l |<co.
n=0 r=0

Thus
2 ks P |£H | p,|
r=0
and
h
ipnlg Zoiln—-r’ Iqung IQMl cd
Hence
Z Ikﬂ—r[ ipr[:O(anD
r=0
Similarly

n

Zoil,,_ri lg.|=0( p,.

r=

The conclusion now follows from Theorem 2.

As (3.1) is in general a difficult condition to check, we proceed now to
obtain some theorems which guarantee that (3.1) is satisfied. We shall suppose
now that the sequences {p,} and {g,} are sequences of positive terms. We begin
by quoting part of a result proved by HArRDY [3, Theorem 22].

If (N, p,) is a regular Nérlund method and

(33) p(}:l, Pn>0= pn+1/pnzpn/pn—l (n>0)

then y,=1 and y,<0 for all >0, where the 7. are defined by (2.12) and (2.13).

8 Math. Z., Bd. 103
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Theorem 3. If (N, q,) is a regular Norlund method, {p,} satisfies (3.3), q,>0,

GulGn-1 =P/ Pry for n>0, and p,=0(q,), then (N, p,) is regular, (3.1) holds,
and (N, p,) = (N, g,).

Proof.

1
-_Qnan
do
and

H
.<Hg, so that %:_S_%—in and hence %:_.,, o
The condition P;=0(|P,|) is satisfied because p,>0. Thus (N, p,) is regular.
We write y,=—c, for n>0, so that, in view of the above mentioned result
of HARDY, ¢, =0 for n>0.,

Now
D= C1 Ppo1— " —¢, Po=0 for n>0

and by (2.10) and (2.11)

qn_clf'i'n—l—"'_'cnqa:kn for ngo
Hence
k"=1—c1£—---—cn 90
QI‘I q,, qn
§I_C1pfn_i ———— C,z—@—:(} for n>0
and thus ! "
k,=0  for n>0.
So we have
lko| pat -+ +1ky| Po=ko Pu—k} Pai— =k, Po
=2k0 p"—ko p"—..._knpo

=2k0 Pn— néz'k()pn-l_Qnng /P

Since p,=0(g,). This proves (3.1). It follows by summing both sides of (3.1)
that

Zolkn‘—i"l PP':O(QH) -
Also we have
|kﬂ!p0§|k0[ pn+'+|kn| pO:O(qB)=O(QH)

since (4, g,) is regular. Further 0<Q,<0Q, ., for >0 and so
k,,/Q,—0 as n—co.

It follows now from Proposition 1 that (N, p,)=(N, g,).
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Corollary 4. If (N, p,) and (N, q,) satisfy the hypotheses of Theorem 3, then
[N,p.]s = [N,q,]s  for ix1.

Proof. This result is an immediate consequence of Theorems 2 and 3.

Theorem 4. If (N, p,) and (N, g,) are regular Nirlund methods, {p,} satisfies
(3'3)! and qn>0’ pn/pn— 1 éqﬂ/‘}n**lfor n>n0= then

[N:pn]j. = I:N; qn:ll for A>1.

Proof. In the case ny =0 the result is an immediate consequence of Theorem 2
and Harpy’s Theorem 23 in [3], which yields (N, p,)=-(N, g,) and k,=0 for
all n, so that

lkol| pat -+ +1ky|l Po=ko Put "+ Ky Po=40-

For the general case we modify the second part of HARDY'S proof of Theorem 23
in [3].
We have
pn/pn—lé‘h/qn—l for n=n0—i—1, n0+25
Let
B for n=ny, ng+1, ...

and define r, recursively for n=n,—1, ny—2, ..., 0, so that r,>0 and

rn+]/}‘ngmin(rn+2/rn+1s Qn+lllqnv Pus 1/pn)'

Let n,=r,/ry, then

n0=19 ’?n>09 ”n+1/nn;nn/ﬂn—l? nn/nn*1§Qn/qn—19
and

/=1 S Puf Pa-1
for n>0. Also we have p,=0(n,).

Thus we have [N, p,1,= [N, n,], by Corollary 4 and [N, n,1,=[N, g,1; by
the case ny =0. Thus [N, p,],= [N, ¢q,]; for A>1, as required.

Theorem 5. If (N, p,) and (N, q,) are regular Norlund methods,

p0=q0215 pn>0! qn>07 pn+1/pn;pn/pn*1’ qn+1/‘1ngqn/qn—l fOI' n>0

pn/{pn-léqn/qn—l fOf' n>n0
and q,=0(p,), then

(N, ps) == (N, 4q,)
and

[N7 pn]l = [N’ QM]J. fOT' /1_21.

Proof. That (N, p,)=(N, g,) follows directly from HarDY’s Theorem 23
in [3].

g*
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To prove that (¥, g,)=(N, p,) let {n,} be defined as in the proof of Theo-
rem 4,

Now, (N, g,)=(N, n,) by Theorem 3, (N, n,)=>(N, p,) by HARDY’s Theo-
rem 23 in [3], and so (W, g,) = (N, p,).

Thus (N, p,)<=(N, g,) and consequently, by Corollary 1, [N, p,], <> [N, g,1,.

To show that [N, p,],<=[N, g,], for A> 1, we observe that [N, p, =[N, q,1,
by Theorem 4, [N, n,], = [N, p,], by the case 1o =0 of Theorem 4, and [¥, ¢,]=
[N, n,]; by Corollary 4 and hence [N, 4u:= [N, p,];. This completes the proof.

4. Relations Between Strong Norlund, Absolute Nirlund,
and Norlund Summability Methods

Theorem 6. [N, p,], = (N, p,).
Proof. Suppose s, —»s[N, p,1;.

Now
: ip(td—s)i = ilpllt"—sl
[PnJ r=0 o ‘lpnjr:o ’ !
Thus
1 & »
B 2Pty o
nr=0
But
T
(41) O Zprir= P Zprsn—lﬂ
nr=0 nr=0
and so
Sp — S(N5 pn) .

Theorem 7. If Pf=0(| P,|) then [N, p,],= (N, D) for A>1.

Progf. Using the fact that P* =0O(| P,|) in conjunction with Theorem 1 in
[1], we find that [N, p,],= [N, P,]i for A>1. The result now follows from
Theorem 6.

Theorem 8. If (N, p,) is regular, and 1= 1 then, 5, ~>8[N, p,l, if and only if,

7 s, = s(N, p,)
an
1 n
ﬁ,—IZIP,I [t —t,|*=0(1).

=0

The proof of this theorem follows closely the proof of BORWEIN’S Theorem 7
in [1].
Proof. We have to prove that

1

4.2) 2 pl 11 =s]*=0(1)
IPnlr:O

if and only if
(4.3) t
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and

(4.4) L S a0

E Pn ‘ r=0
(i) Suppose that (4.2) holds. Then, by Theorem 7, (4.3) holds, and so

1
[ Puly

@.5) Y |zl st}
=0

since (N, p,) is regular. Hence, by MINKOWSKI’s inequality and (4.2),
n 1/A
1 - 4 A Y 1 A4 A
Tp | el 18 — 1, ST |ertr_SI
{’Pn|rZO|PH l} Ipnir:ZO

1 2 14
Goge— 8 b | [
{P,,I,Zolp” I}
=o(l)
and (4.4) follows.

(i) Suppose that (4.3) and (4.4) hold. Again, (4.5) holds. Hence, by MIN-
KOWSKI'S inequality and (4.4),

. ﬁ:lprlltf-'—SI’1 IMS 3 ilprlllf-tﬁl}m
|Pnlr:O - |Pn!r:0
1 n g 1/
+ rl tr—Sl }
{JPn[rgolp l

=o(1),

so that (4.2) holds. The proof is thus complete.
Remark.

o

oo
If > a, issummable|N,p,[,, then Y a,=s(N,p,)
r=0 n=0
where

o0

(4.6) s= Y (ly—t,_)+to.

n=1

Theorem 9. If (N, p,) is regular and

o0
Y a, issummable |N,p,|,,
n=0

then
Z an:S[N! Pn]l,
n=0

where s is given by (4.6).
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Proof. By Theorem 8 it suffices to prove that,

(4.7) P* ZIP,III —t|=o(1).

n r=0

Now, for r>0,

't_'t _—devr v_—zpvr v

rv=0 r

r—1

Pzpvrv Pzpvr—-v | przpvr v

= V=

A

r==]

&
—

Pr—l Z varﬁv_ljr,}_, PySr—v—q
v=0 v=0

n. P
=})r—1 tr_PrvI fh—y
pr ’
so that
(4.8) Pt —t)=P._y(t,—1,_,),
and hence

P*
It =t | S 1, —t, 4.
| ,|

Consequently, since 75 =¢,,

1 y L
P"* rgolprlltr é ; 1|t ,-_1|~
Let
br:ltr_trklfi Bn=2brs
r=1
then
1 n
P* ZPr*‘lbran— ZB lprf_o(l)
n r=1 n r=1

by the regularity of (N, p,). The required conclusion follows.
Theorem 10. If A>1, (N, p,) is regular and

(4'9) P,,*_1=O(n[p,, |);
and if the series

”
>
n=0

is summable (N, p,) to 5 and is summable | N, pola then the series is summable
[N pn]i fo s.
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Proof. Using (4.8), we find that

):IprilI —t Il_P* ZI E =]t
r

P |

P*

1 P i
P* LPr*lr A
n r=1

Using the same technique as in the proof of Theorem 9 we find that the final

term is o(1), so that
n

e =t =0(1)

Finally, using Theorem 8, we obtain the desired conclusion.

Remark. Condition (4.9) is satisfied when {|p,|} is non-decreasing, and also
if (N, p,) is the (C, @) method of summability with «> —1.

5. Construction of a Scale of Norlund Methods

We shall restrict ourselves now to Norlund methods (&, p,) for which p,>0
and p,=0.
Given any sequence {v,} we use the notation

(5.1 the= 3 oy gy
r=0

so that

(8.2 Av,=v; L,

n
(5.3) Yot =0,
r=0
(5.4) Pr=gf*te Y g,
r=90

We are going to consider the family of Norlund methods (N, p%) fora> —1,
and, when p,=0 for all values of n, we shall alow «= —1. In the special case
po=1, p,=0 for n>0 we have p,=¢2""1, so that (¥, p%) is the Cesaro method
(C, a).

Theorem 11. If either (i) f>a>—1 for (i) f>0=~1,p,>0 and P,— co,
then (N, p®) = (N, p5).

Proof. We use Proposition 1 with pi and pf in place of p, and g¢,.
Let f—a=d>0.
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Now the appropriate k,=¢5""'>0 and, by (5.3),
ea ' PY+ o el Pe= PP,

So the appropriate form of (2.14) in Proposition 1 holds.

Since in this case k,_,~k,, in order to verify the appropriate form of (2.15)
it suffices to show that

(3.5) & /Bl =0(1).

Now, for a> —1,

o IR =aT ) Y 6 g, el e gy = 0(1/n ) =0(1).
0

Finally when «=—1 and P, - o0, we may suppose without loss in generality
that 0<8 <1 and then obtain

& (BT Seh ey By=1/P,=0(1).

This completes the proof of the theorem.

Corollary 5. If (N, p,) is a regular Norlund method, then so also is (N, p9)
Sor a>0.

Theorem 12. If either (i) 0>0 or (i) =0, p,>0 and P,—co, then
(N, pi~ V)= [N, p?l, for 4>0.

Proof. Let 5, —s(N, p*~ 1), i.e. let
1

‘ a—1
Wn=Fr;0Pn—r S, —>S.
Then
(5.6)

= Zop;‘.‘lwr—sllw(l)

it (N, p}) is regular, which is the case when either (i) or (ii) is satisfied. Since
(5.6) is equivalent to s, —s[N, p2],, this completes the proof.
Theorem 13. For 020 and 121,
[N, Pali= (N, p})
provided p,>0 when o« =0.

Proof. This result follows immediately from Theorems 6 and 7, and p? in
place of p,.

Theorem 14. If (N, p,)=(N, g,), then (N, p%) =(N, ¢%) for 0.>0.
Proof. We have, by hypothesis and Proposition 1,

|k0|Pn+ v +lkrr| PogHQn-
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Now
|kol Pyt - +|k,| Py

v=0 F=yv
n
B by ey
v=0
=HQ;.

Also |k, _ |/07=k,-.|/Q,=0(1) by hypothesis and Proposition I. The con-
clusion now follows from Proposition 1.

Corollary 6. If (N, p,) is regular, then, for o> 0.
(C.o)=(N,p)) and [C,al,=[Npil, for AzL

Theorem 15. If f>oa=0 and A=1 then [N, pil,= [N, ptl, provided p,>0
when o =0.

Proof. This follows immediately from Theorems 1 and 11 in the case A=1,
and from Theorems 2 and 11 in the case 1> 1, because

n

s —a-1
Y lpi =pf and £7°7'>0.
r=0

6. An Application

The method (C*, p) is defined by BorweN [2] as follows: Let u=m+6,
where m is a non-negative integer, and 0<d<1, and let

n,(xX)=m!lep(x+m+1°=(x+1)...(x+m)(x+m+1)°.
A series

o0
>a,
=0

is said to be summable (C*, p) to s if,

r

1 n
n,(n—r)a,—s.
TEH(H) r;() .

T =

n

The method (C*, p) is the Nérlund method (N, p,) with
(61) p,,zrr”(n)—nu(n—l).
BorwEIN [2] has proved that

(6.2) (CHw=(C,p)  for p20.
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We now define the strong method [C*, u]; to be the method [N, p,]; with p,
given by (6.1), and prove the following theorem.

Theorem 16. For p>0, A=1, [C*, u],<[C, ul;.

Proof. The case .=1 follows immediately from (6.2) and Theorem 1. Sup-
pose therefore that A>1, and let g, =&}~ '. We consider two cases, (i) x=1 and

(i) u<l.
Case (i) p>1. Now m,(n)~I'(u+1) &.
Also

w,(n)—m,(n—1)
7, -1(n)

=(n+m)[(1+1)(n+m))’—1]+m

—-d0+m=yu as n— .
Thus

Pe=m, (W) —m,(n=D~pm, (W)~ (u+1) g™ =T'(u+1)g,.

Now g¢,=¢:"'<gq,,, since u=1, and, by (6.2) and Proposition 2,

Y <o and Y |k,|<o0.
n=0 n=0

Hence

lkol put -+ +1k,l Pozo(lko| dst+ 4| k) "1’0)=O(qp;)
and
”0| qn+ R +|In| QO=O(QH)=O(pﬂ)‘

The desired result now follows from Theorem 2.
Case (i) p<1ie u=35 with 0<d<l.

Now
(6'3) (J'n+1/q"rzcbl/qu—1 for n>05
because '
qn+lqn—1_ n2+fl5 >]_ f 0
& wrnsre—i2l  forn>0.
Also
(64) pn+1/pn;pn/pn-1 for n>0,
because
nt+146,\°""
pn+1/pn_ (Tgn') (0<6,,<1)

1 a—1
=@*Eﬁﬂ

1 o—1
> S 1 .
:(1+n_1+8rs—1)

= P/ Pn-1-
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We show next that there is an integer n, such that

(65) pn+l/pn;qn+ I/Qn for n>n0‘
Let

ﬂﬂ=iﬁﬂ

=3(1+2x)" P+ 3 (14+2x) 4+ 1+ 8 x—(14+8)(1+x) T~ (1= 5)(1 +x)°
An elementary computation shows that
fo=fi=f2=0 and 2f;=6(1-8)2>0.
Hence, for n sufficiently large,
n' P fm) =+ D) {(n+2)°—(n+ 1)’} —(n+ ) {(n+ 1’ ~n’} >0
and (6.5) follows, because

Pot1dn _ N+l (n+2°—(n+1)
Pndn+1 N+0 (n+17°—n’°

Since py =g, =1, p,=0(g,) and (6.3), (6.4) and (6.5) hold, we obtain the desired
conclusion in Case (ii) by appealing to Theorem 5.
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