ON GENERALISED CESARO SUMMABILITY

By
D. BorRwWEIN

(Prof. B. N. Prasad Memorial Vol.)

Reprinted from the Indian Fournal of Mathematics, Vol 9, No. 1
January 1967, Pages 55-64

2



Indian Journal of Mathematics, Vol. 9, No. 1 (Fanuary, 1967)
Prof. B. N. Prasad Memorial Volume

ON GENERALISED CESARO SUMMABILITY
By
D. BorweIN
(Received August 6, 1966)
1. Introduction. Let{A,} be a strictly increasing unbounded sequence
with 2,20, let
p=p+8 (p=0, 1,...; 0<8<1)

= -
and let X 4, be an arbitrary series. We write
n=0

A (w) =z (=N,

p<<m

(An+1_t)8 (f—’=0):
aha(t) = »
(Aayrip—1)8 I_{{{Anﬁ—'?) (22=1),

gl 2 a2 av,
V=0
and say that the series X g, is summable to s by

(i) the Riesz method (R, A, p), if w=r A" (w)—s as w—sco,

(i) the discrete Riesz method (R*, A, u), if A7*4%(),) -,

(iil) the generalised Cesiro method (C, A, ), if CE (0) = s.

The summability methods (R* A, ) and (C, A, p) are identical
when 0<{u<{1. For integral values of the parameter u, the method
(C, A, ), which is essentially the same as methods defined independently
by Jurkat' and Burkill?, reduces to the standard Cesiaro method (C, p)
when A,=n. Burkill considered only the integral case but Jurkat extended
his definition to non-integral values of the parameter in a manner differ-
ent from the above,

1. Jurkat (7),
2. Burkill (4).
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56 D. BORWEIN

The inclusions
(1) (Cs’\; #)S(Rg Aa F'):
(2) (R, As }-") = (C: A) :”')

are known to be valid under various hypotheses on the sequence {},} and
the parameter u. The most general results to date are as follows :

Russell* has proved that (1) holds (i.e. that every series summable
(G, A, 1) to s is summable (R, A, u) to 5) without any restriction on {2}
when u is an integer, and that (2) holds provided
)l
%A
when p=3, 4, ... and unrestrictedly when ,u,=0, 1.2.
(2) holds if u is an integer and

(4') n+1 O{)‘n)
In the special case A,=n, I have proved® both (1) and (2) to hold

for all n=0 by showing (G, A, p) to be equivalent to (C, ), well-known
to be equivalent to (R, A, pu).

(%) Ay =0(A), A=

I have shown? that

Since the submission of this paper for publication, it has been shown
that (2) holds without restriction on {),}, for u an integer by Meirt and,
subsequently, for all >0 by Russell and myself®. (Added May 10, 1967).

For non-integral values of u, inclusion (1) is more difficult to deal
with than (2). In the range 0<u<C1, (1) is the same as the inclusion
(5) (R*: /\, .Iu') = (RJ A, I‘L)
and Jurkat® has shown (5) to hold without restriction on {A.} in the said

range. Peyerimhoff” has established the validity of (3) in the range
1<p<log 3/log 2=158...subject to the conditions

_"*‘_1 éﬂ,ﬁ nta
X ¥ Le. e == 4\,,+1)
and ihi’:‘ =l A =N

while Kuttner® has shown that, when A, =n, (5) holds for 1 <p<2 but fails

Russell (12).

Borwein (1).

Borwein (1).

Meir (10).

Borwein and Russell (3).
Jurkat (6).

Peyerimhoff (11),
Kuttner (9).
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for every p==2. The question whether or not (5) continues to hold for
more general sequences {A,} when log 3/log 2<{;n <2, remains open,

The main object of this paper is to prove that inclusion (1) holds
whenever 1<p<2, provided the sequence {A,} satisfies :

(6) ""W
and

A,
(7) =

Note that (6) implies both (3) and (4).

It is hoped that, by extending the arguments employed below, it will
be possible to establish (1) for non-integral p>>2 under reasonably light
restrictions on {A,}.

2. Auxiliary results.
for v>n and ¢, ,50) and let

Let (6,) be a normal matrix (i.e. ¢, =0

(=01, ... );

n
Og=— =z Cn,v Sy
V=0

The following three lemmas, incorporating key results required in
the rest of the paper, are due essentially to Jurkat and Peyerimhoff'. The
proof of Lemma 2 is straightforward? and Lemma 3 is an immediate conse-
quence of Lemmas 1 and 2.

Lemma 1. If
(8) cn,'lt’>0 (0<v<m),

(9) o g lois

==
Cn—l,v Cn—x,vfl

(1<v<n—1),

then the matrix (c,v) satisfies the ““mean value” condition

(10) | 2 apsy | < Gl i la,| (0<m<n).
LeEMuMa 2, If £>0, 0,=0(¢,) and
(11) Cn,u=0(‘fa)=

(12) 0< mo <M Cry0
Z

« Jurkat and Peyerimhoff (8, Satz 1 and Satz 3; see also Peyerimhof, 11, p. 71).
2 Jurkat and Peyerimhoff (8), p. 98.

(0<r<in, M a positive constant),




58 D. BORWEIN

6ﬂ,° !
then max = o |=0(&):

0 Lr<in o
Lemma 3. If§,>0, o,=0(£,) and the matrix (¢,v) satisfies conditions

(10), (11) and (12), then

oy (f_)

N Cnyn ;

We require one additional lemma.
Lemuma 4. The method (C, A, p) is regular for every p=0.

The case 0<u<1 of this lemma is well-known, and Russell! has |

proved it for p an integer. Let

Sg= Py ays
V=0
A
then ———= 2 Ya,v S,
)
where Y= — e Q) == Q)20 (0<r<)-
7t (0)
Now, for any fixed v=0,
s (Av)
-1 as n—00,
' (0)
so that Yn,y—>0 as n—>00;
I
1t n Ty (Ao)
and = ]')’n,Vi= %‘ Y,y = - -1,
=0 V=0 Ty (O)

It follows, by a standard result?, that C’:/Tr!: (0)—s whenever s5,—>5,
i.e. that (C, A, u) is regular.
3. The main results. Suppose throughout this section that
0<d<l.
In addition to the notations introduced in §1, we shall also use the following?
S,,= 2”" dys
V=0
A(w)= 2 ay,
P Lw

v

by =2ty — Ag=—4A,,

1. Russell (12).
2. Hardy (3), p. 43.
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d
a(t)=— Z{(hts =) Apra— 1) — (A =1) (s, — )3}
d
=— Z{m (1) —n, 13 (1)}

(Og t<Aﬂl+13 n;O) 2

e, Ayn
=], 6a(2) dt (0<v<n)y ¢,y =0 (v>>n).
Then

1 4a (P
(13) GGy p4d= [ n1e3(0) 1430} da(e)= [y A(e) d

=viﬁn’v Sy (n:O, I, ...).
Note that
(14) Cnyn™= (An+1 _‘“An) (’\n+a_)‘n) 6>k.1+8
and that

(15) ~— é 148 (1) —

dt Tn—i (‘f') _(1 +8} (Arﬁ-l_t)s_akn( n+1_t)6_1 (0‘-<-.t<’\n+1> n>0)-

TrEOREM 1. If (6) and (7) hold and tf
(16) £>0, %1 o,
then the normal matrix (c,y) satisfies conditions (8), (9), (11) and (12).

Proof. Let

e e g o G S
1 kn+1 +2 n+1‘-~..u</\l+p H;O),

b= (1, £) = (1-8) (u—t)3 —8k() (u—1) 31
J=i(u, )= 3¢

(O\.<‘_t<u, u;ﬁl) .

Then k(A1) =4, (n=0, 1, ...), and hence, in view of (15),
(17) Cﬂ(t):qs("rﬁa, t) _—‘}5(“&4-1, t) (O§t<’\n+1, ?120).
Further,

18 v ky
(18) 3 —«8(S—f—knﬂ)(u—t)s'l—l—b‘(l—S)k(u) (u—t)8-2>0

(0§f< An+1<u<“u+l) :

It
3 f;l:.:)ows from.(1.7) and (18) that ¢,(t)>0 (0<¢<),4,) and hence that
8v>0 (0<v<{n), i.e. that the matrix satisfes condition (8).
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Differentiating (18) with respect to ¢, we get

3 734\ 1—38 (3¢ Bl SR
a9 220 120 k] OSt<hm<u<hn
Cnv_ _ Enltv)
‘711——1—,:—5"-1(V

Since (AV<tV<AV+15 0“-<-.V€n_l))

inequality (9) will be established if we can show that

ea(t)
6,_1(1)
decreases as ¢ increases from 0 to A,, and to do this it suffices to prove

(20) L ((f)) o (Ef)) (0t<h,, n=1).

In view of (17), (18) and (19), we have

ORI BT g—f]u=u

@h ST e e
—_ 1
=:,?[1+ gt]
3 1r_3 1_(84_ n+1)k(un)
(0t <A1 <Up<Apiy)-
Now, for fixed 1220,
(22) k(_i)t decreases with increasing u>min (¢, ),

0ttty Ay SU<Agis n=0,

o E i B
MO 1 ot e O =)

since, when

and, in virtue of (6),

b t
L g A
er+1 >Arri-'-* /An+2

Inequality (20) follows from (7), (21) and (22); and it remains to establish
that the matrix satisfies (11) and (12).

In view of (17) and (18), we have

o
(23) 0",o=kn Cn(vn):ku kn'['l EE]H= W, t=IJ,

__Sko(wn-—v,,)a —k {1+ e (8+(1-8) k(wn)n)}

(A0, <A, <A, S0 <Agpy n=1).
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Since Ata>Apa— 0 > Ay — n>’\n+1_h12‘\n+1;& (n=1),
2
it follows from (22) and (23) that

(24) Skodpya-1 k{14 "“(8+< L) A"ZZ)}
6o "

<8ko( )” Pt {1 +’“;C—:1 (s+(1_5) Af:])}(@l).

Hence, by (7), (16) and (24),

njo= {f,, s (1+

i.e. the matrix (g, ) satisfies (11).

=) <o,

Finally, by (6), (7) and (16),

A3‘+14’ Aﬂ {’ n+14’ r+1 J(,

and so it follows from (24) that, for Ogrgn—l,
nyo S kpiq ki
Eoon () g B (o f))

Az)z—s (z\,H 1-8 Gy (}\ )a -8 (A )1..8
<z S -
\( 1 Ar+1 Al f 1=

showing that the matrix (¢,v) satisfies (12).

In what follows, we suppose that

x=x(w) (w>A)
is the integer such that

A,‘<w:.<\t\,‘+,.

TueorsM 2. If (6), (7) and (16) hold, if &,[k, } , and if

(25) Cn1+s=0(§n)s

then

(26) si=o25),

(27) 43 (w)=o0 (%') (w—>00),
(28) A+ (w)=0(£,) (w—>w).

Proof. Note first that, by (16), £,

61



62 D. BORWEIN

In virtue now of (13) and (25), we have

(29) 0'n=z€,g,v SV:C;I1+6 _Cn—11+a =0(§n);

V=0
from which it follows, by Theorem 1, Lemmas 1 and 3, and (14), that

A8 (),

47,

i.e. that (26) holds.

Suppose now that w3, so that x=x(w)>3. Then

w Ax—1
(30) 43 (w)_SL\ ()5 (1) di= | 7 =3 ()t

x=2

= sz‘v Sv,
V=0

A
where o= J-,\‘;“(w-— 8-1dt  (0<r<x—2).

In view of (26), we have

(31)81[1_ (w——t)a—lA(t)dtlgﬁls,,_llj:’; w— )81+ 3]s, g"’ (w—t)8-1dt

<lsx—llkx—18+ls L =0 (fl) (w—00).

Next we observe that

by _S(w—ty) 81

(Av<tv<hv+1’ Ogvg_x'_‘Q) .
Gx—s,V cx—g( V)

(32)

As t increases from 0 to A,.,,
S(w—t)8-1
)= "—t—
x(0) Cx—s(t)
decreases, since, by (21),

X’(t) =0 Gx—sf(t)< ]:E__ 13 <0;

X(t) w—t Ce—a(t) JEEE A
and, therefore, it follows from (32) that

ey <_b=«l%. (1<v<e—2).

=
"‘x—g,v cx—a,t’-;
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Consequently, by (30) and partial summation,

T bay

V=0 Cx.g,v

)

Comg,v Sv /

g& max

Z' ¢ S
—2
Camgo0 OEMG a2 sl o ¢

V=0

Now, by (24) and (32),

< ealiee ol gt 1
Ca=20 T SRS, S Sko\k, l?—). :

Also, by Theorem 1 and Lemmas 1 and 2, it follows from (29) that

(34)

(35) max

e PX c‘x—a,v.i‘vf< max S h"i '[_0 fg—-:)

=0 oKrx—2 G

Hence, by (33), (34) and (35),

(36) f Meleon s, o ft—o(f; 1) (w=>00);

0
2—1

and conclusion (27) follows from (30), (31), and (36).

We are now in a position to establish (28), the one outstanding con-
clusion. By (35) and (27),

A O0) =Py, A3 O)=0(E) 40 (e, )0t ),

and consequently, by (27) again,
A3 () = A3 () (14-5) J': A3 (1) dt

=o(ée-o)+olte §)=0(8) (wrc0).

TueoremM 3. If (6) and (7) hold, and if C+8 =0 (A AussS), then
A+ (w) =o(w*9) (w—>c0).
Proof. Take £,=Xi,A4,%; then

£ Eopr A8 =
i —o0 and Satl ‘‘nta il ( 'n+38 +a\l
Appa® An+’a £ A:H—s) ()‘n+1) =i

so that £, satisfies (16). Also, by (6), £,/k,%.
Theorem 2,

Consequently, by

A3 () =0(A3,A14%) =0(w?+9) (w—>0),
MV 11



64 D. BORWEIN
since, in view of (6),

Aae+1ha—i-ns i"ﬁ()‘x'h)a:O(I).

un+6 A, A,

Since (R, A, u) is known to be regular and (C, A, u) is regular, by
Lemma 4, the following theorem is an immediate consequence of
Theorem 3.

THEOREM 4. If %,{,, Aﬁxﬂ\wnd l<u<2, then

(G, A, r) S(R, A ).
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