By
D. Borwein

(Prof. B. N. Prasad Memorial Vol.)

By

D. BORWEIN

(Received August 6, 1966)

1. Introduction. Let $\{\lambda_n\}$ be a strictly increasing unbounded sequence with $\lambda_0 \ge 0$, let

$$\mu = p + \delta$$
 ($p = 0, 1, ...; 0 \le \delta < 1$)

and let $\sum_{n=0}^{\infty} a_n$ be an arbitrary series. We write

$$A^{\mu}(w) = \sum_{\lambda_{\nu} < w} (w - \lambda_{\nu})^{\mu} a_{\nu},$$

$$\pi^{\mu}_{n}(t) = \begin{cases} (\lambda_{n+1} - t)^{\delta} & (p = 0), \\ (\lambda_{n+1+\rho} - t)^{\delta} & \prod_{i=1}^{\rho} (\lambda_{n+i} - t) & (p \geqslant 1), \end{cases}$$

$$C^{\mu}_{n} = \sum_{\nu=0}^{n} \pi^{\mu}_{n}(\lambda_{\nu}) a_{\nu},$$

and say that the series $\sum a_n$ is summable to s by

- (i) the Riesz method (R, λ, μ) , if $w^{-\mu} A^{\mu}(w) \rightarrow s$ as $w \rightarrow \infty$,
- (ii) the discrete Riesz method (R^*, λ, μ) , if $\lambda_n^{-\mu} A^{\mu}(\lambda_n) \to s$,
- (iii) the generalised Cesàro method (C, λ, μ) , if $C_n^{\mu}/\pi_n^{\mu}(0) \rightarrow s$.

The summability methods (R^*, λ, μ) and (C, λ, μ) are identical when $0 \le \mu \le 1$. For integral values of the parameter μ , the method (C, λ, μ) , which is essentially the same as methods defined independently by Jurkat¹ and Burkill², reduces to the standard Cesàro method (C, μ) when $\lambda_n = n$. Burkill considered only the integral case but Jurkat extended his definition to non-integral values of the parameter in a manner different from the above.

^{1.} Jurkat (7).

^{2.} Burkill (4).

57

The inclusions

$$(C, \lambda, \mu) \subseteq (R, \lambda, \mu),$$

$$(R, \lambda, \mu) \subseteq (C, \lambda, \mu)$$

are known to be valid under various hypotheses on the sequence $\{\lambda_n\}$ and the parameter μ . The most general results to date are as follows:

Russell¹ has proved that (1) holds (i.e. that every series summable (C, λ, μ) to s is summable (R, λ, μ) to s) without any restriction on $\{\lambda_n\}$ when μ is an integer, and that (2) holds provided

(3)
$$\Lambda_{n-1} = O(\Lambda_n), \quad \Lambda_n = \frac{\lambda_{n+1}}{\lambda_{n+1} - \lambda_n}$$

when $\mu=3, 4, ...$ and unrestrictedly when $\mu=0, 1, 2$. I have shown² that (2) holds if μ is an integer and

$$\lambda_{n+1} = O(\lambda_n).$$

In the special case $\lambda_n = n$, I have proved both (1) and (2) to hold for all $\mu \ge 0$ by showing (C, λ, μ) to be equivalent to (C, μ) , well-known to be equivalent to (R, λ, μ) .

Since the submission of this paper for publication, it has been shown that (2) holds without restriction on $\{\lambda_n\}$, for μ an integer by Meir⁴ and, subsequently, for all $\mu \geqslant 0$ by Russell and myself⁵. (Added May 10, 1967).

For non-integral values of μ , inclusion (1) is more difficult to deal with than (2). In the range $0 \le \mu \le 1$, (1) is the same as the inclusion (5) $(R^*, \lambda, \mu) \subseteq (R, \lambda, \mu)$

and Jurkat⁶ has shown (5) to hold without restriction on $\{\lambda_n\}$ in the said range. Peyerimhoff⁷ has established the validity of (5) in the range $1 < \mu < \log 3/\log 2 = 1.58...$ subject to the conditions

$$\frac{\lambda_{n+1}}{\lambda_n} \downarrow$$
 (i.e. $\frac{\lambda_{n+1}}{\lambda_n} \geqslant \frac{\lambda_{n+2}}{\lambda_{n+1}}$)

and

$$\frac{\Delta \lambda_{n+1}}{\Delta \lambda_n} \to 1, \qquad \Delta \lambda_n = \lambda_n - \lambda_{n+1};$$

while Kuttner⁸ has shown that, when $\lambda_n = n$, (5) holds for $1 < \mu < 2$ but fails

- 1. Russell (12).
- 2. Borwein (1).
- 3. Borwein (1).
- 4. Meir (10).
- 5. Borwein and Russell (3).
- 6. Jurkat (6).
- 7. Peyerimhoff (11).
- 8. Kuttner (9).

for every $\mu \ge 2$. The question whether or not (5) continues to hold for more general sequences $\{\lambda_n\}$ when $\log 3/\log 2 \le \mu < 2$, remains open.

The main object of this paper is to prove that inclusion (1) holds whenever $1 < \mu < 2$, provided the sequence $\{\lambda_n\}$ satisfies

$$\frac{\lambda_{n+1}}{\lambda_n} \downarrow$$

and

$$\frac{\Delta \lambda_{n+1}}{\Delta \lambda_n} \downarrow.$$

Note that (6) implies both (3) and (4).

It is hoped that, by extending the arguments employed below, it will be possible to establish (1) for non-integral $\mu>2$ under reasonably light restrictions on $\{\lambda_n\}$.

2. Auxiliary results. Let $(c_{n,\nu})$ be a normal matrix (i.e. $c_{n,\nu}=0$ for $\nu>n$ and $c_{n,n}\neq 0$) and let

$$\sigma_n = \sum_{\nu=0}^n c_{n,\nu} s_{\nu} \quad (n=0, 1, ...).$$

The following three lemmas, incorporating key results required in the rest of the paper, are due essentially to Jurkat and Peyerimhoff¹. The proof of Lemma 2 is straightforward² and Lemma 3 is an immediate consequence of Lemmas 1 and 2.

LEMMA 1. If

$$c_{n,\nu} > 0 \quad (0 \leqslant \nu \leqslant n),$$

(9)
$$\frac{c_{n,\nu}}{c_{n-1,\nu}} \leqslant \frac{c_{n,\nu-1}}{c_{n-1,\nu-1}} \quad (1 \leqslant \nu \leqslant n-1),$$

then the matrix $(c_{n,\nu})$ satisfies the "mean value" condition

$$(10) \qquad \left| \sum_{\nu=0}^{m} c_{n,\nu} s_{\nu} \right| \leqslant \max_{0 \leqslant r \leqslant m} \frac{c_{n,0}}{c_{r,0}} \mid \sigma_{r} \mid (0 \leqslant m \leqslant n).$$

LEMMA 2. If $\xi_n > 0$, $\sigma_n = o(\xi_n)$ and

$$c_{n,0}=o(\xi_n),$$

(12)
$$0 < \frac{c_{n,0}}{\xi_n} \leqslant M \frac{c_{r,0}}{\xi_r} \quad (0 \leqslant r \leqslant n, M \text{ a positive constant}),$$

- 1. Jurkat and Peyerimhoff (8, Satz 1 and Satz 3; see also Peyerimhoff, 11, p. 71).
- 2. Jurkat and Peyerimhoff (8), p. 98.

59

then

$$\max_{0 \leqslant r \leqslant n} \frac{c_{n,0}}{c_{r,0}} \mid \sigma_r \mid = o(\xi_n).$$

LEMMA 3. If $\xi_n > 0$, $\sigma_n = o(\xi_n)$ and the matrix (c_n, v) satisfies conditions (10), (11) and (12), then

$$s_n = o\left(\frac{\xi_n}{c_{n,n}}\right).$$

We require one additional lemma.

LEMMA 4. The method (C, λ, μ) is regular for every $\mu \geqslant 0$.

The case $0 \le \mu \le 1$ of this lemma is well-known, and Russell¹ has proved it for μ an integer. Let

$$s_n = \sum_{\nu=0}^n a_{\nu};$$

then

$$\frac{C_n^{\mu}}{\pi_n^{\mu}(0)} = \sum_{\nu=0}^n \gamma_{n,\nu} \, s_{\nu},$$

where

$$\gamma_{n,\nu} = \frac{1}{\pi_n^{\mu}(0)} \{ \pi_n^{\mu}(\lambda_{\nu}) - \pi_a^{\mu}(\lambda_{\nu+1}) \} \geqslant 0 \qquad (0 \leqslant \nu \leqslant n).$$

Now, for any fixed $\nu \geqslant 0$,

$$\frac{\pi_n^{\mu}(\lambda_{\nu})}{\mu_{n}(0)} \to 1 \text{ as } n \to \infty,$$

so that

$$\gamma_{n,\nu} \rightarrow 0$$
 as $n \rightarrow \infty$;

and

$$\sum_{\nu=0}^{n} |\gamma_{n,\nu}| = \sum_{\nu=0}^{n} \gamma_{n,\nu} = \frac{\pi_n^{\mu}(\lambda_0)}{\pi_n^{\mu}(0)} \rightarrow 1.$$

It follows, by a standard result², that $C_n^{\mu}/\pi_n^{\mu}(0) \rightarrow s$ whenever $s_n \rightarrow s$, i.e. that (C, λ, μ) is regular.

3. The main results. Suppose throughout this section that $0 < \delta < 1$.

In addition to the notations introduced in §1, we shall also use the following:

$$s_n = \sum_{v=0}^n a_v,$$

$$A(w) = \sum_{\substack{\lambda_{\nu} < w}} a_{\nu},$$

$$k_{n} = \lambda_{n+1} - \lambda_{n} = -\Delta \lambda_{n},$$

$$c_{n}(t) = -\frac{d}{dt} \{ (\lambda_{n+1} - t)(\lambda_{n+2} - t)^{\delta} - (\lambda_{n} - t)(\lambda_{n+1} - t)^{\delta} \}$$

$$= -\frac{d}{dt} \{ \pi_{n}^{1+\delta}(t) - \pi_{n-1}^{1+\delta}(t) \} \qquad (0 \le t < \lambda_{n+1}, n \ge 0),$$

$$c_{n,\nu} = \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} c_{n}(t) dt \ (0 \le \nu \le n), \quad c_{n,\nu} = 0 \ (\nu > n).$$

Then

(13)
$$C_{n}^{1+\delta} - C_{n-1}^{1+\delta} = \int_{0}^{\lambda_{n+1}} \{\pi_{n}^{1+\delta}(t) - \pi_{n-1}^{1+\delta}(t)\} dA(t) = \int_{0}^{\lambda_{n+1}} c_{n}(t) A(t) dt$$
$$= \sum_{\nu=0}^{n} c_{n,\nu} s_{\nu} \qquad (n=0, 1, \ldots).$$

Note that

$$(14) c_{n,n} = (\lambda_{n+1} - \lambda_n)(\lambda_{n+2} - \lambda_n)^{\delta} > k_n^{-1} + \delta$$

and that

$$(15) \quad -\frac{d}{dt}\pi_{n-1}^{1+\delta}(t) = (1+\delta)(\lambda_{n+1}-t)^{\delta} - \delta k_n(\lambda_{n+1}-t)^{\delta-1} (0 \leqslant t < \lambda_{n+1}, n \geqslant 0).$$

THEOREM 1. If (6) and (7) hold and if

(16)
$$\xi_n > 0, \frac{\lambda_{n+1}^{\delta}}{\xi_n} \downarrow 0,$$

then the normal matrix $(c_{n,\nu})$ satisfies conditions (8), (9), (11) and (12).

Proof. Let

$$\begin{split} k(u) &= u - \lambda_{n+1} + \frac{k_n}{k_{n+1}} \left(\lambda_{n+2} - u \right) & \left(\lambda_{n+1} \leqslant u < \lambda_{n+2}, \ n \geqslant 0 \right); \\ \phi &= \phi(u, t) = (1 + \delta)(u - t)^{\delta} - \delta k(u)(u - t)^{\delta - 1} \\ \psi &= \psi(u, t) = \frac{\partial \phi}{\partial t} & \left(0 \leqslant t < u, \ u \geqslant \lambda_1 \right). \end{split}$$

Then $k(\lambda_{n+1})=k_n$ (n=0, 1, ...), and hence, in view of (15),

(17)
$$c_n(t) = \phi(\lambda_{n+2}, t) - \phi(\lambda_{n+1}, t) \qquad (0 \le t < \lambda_{n+1}, n \ge 0).$$

Further,

(18)
$$\frac{\partial \phi}{\partial u} = \delta \left(\delta + \frac{k_n}{k_{n+1}} \right) (u-t)^{\delta-1} + \delta (1-\delta) k(u) (u-t)^{\delta-2} > 0$$

$$(0 \le t < \lambda_{n+1} < u < \lambda_{n+2}).$$

It follows from (17) and (18) that $c_n(t) > 0$ $(0 \le t < \lambda_{n+1})$ and hence that $c_{n,\nu} > 0$ $(0 \le \nu \le n)$, i.e. that the matrix satisfies condition (8).

^{1.} Russell (12).

^{2.} Hardy (5), p. 43.

61

Differentiating (18) with respect to t, we get

(19)
$$\frac{\partial \psi}{\partial u} = \frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial u} \right) = \frac{1 - \delta}{u - t} \left\{ \frac{\partial \phi}{\partial u} + \delta k(u) (u - t)^{\delta - 2} \right\} (0 \leqslant t < \lambda_{n+1} < u < \lambda_{n+2}).$$

Since
$$\frac{c_{n,\nu}}{c_{n-1,\nu}} = \frac{c_n(t_{\nu})}{c_{n-1}(t_{\nu})} \quad (\lambda_{\nu} < t_{\nu} < \lambda_{\nu+1}, \ 0 \le \nu \le n-1),$$

inequality (9) will be established if we can show that

$$\frac{c_n(t)}{c_{n-1}(t)}$$

decreases as t increases from 0 to λ_n , and to do this it suffices to prove

(20)
$$\frac{c_{n}'(t)}{c_{n}(t)} \leqslant \frac{c_{n-1}'(t)}{c_{n-1}(t)} (0 \leqslant t < \lambda_{n}, n \geqslant 1).$$

In view of (17), (18) and (19), we have

(21)
$$\frac{c_{n}'(t)}{c_{n}(t)} = \frac{\psi(\lambda_{n+2}, t) - \psi(\lambda_{n+1}, t)}{\phi(\lambda_{n+2}, t) - \phi(\lambda_{n+1}, t)} = \left[\frac{\partial \psi}{\partial u} / \frac{\partial \phi}{\partial u}\right]_{u=u_{n}}$$

$$= \frac{1 - \delta}{u_{n} - t} \left[1 + \frac{1}{1 - \delta + \left(\delta + \frac{k_{n}}{k_{n+1}}\right) \frac{u_{n} - t}{k(u_{n})}}\right]$$

$$(0 \leqslant t < \lambda_{n+1} < u_{n} < \lambda_{n+2}).$$

Now, for fixed $t \ge 0$,

(22)
$$\frac{k(u)}{u-t}$$
 decreases with increasing $u > \min(t, \lambda_1)$,

since, when

$$0 \leqslant t < u, \lambda_{n+1} \leqslant u < \lambda_{n+2}, n \geqslant 0,$$

$$\frac{k(u)}{u-t} = 1 - \frac{k_n}{k_{n+1}} + \frac{1}{u-t} \left\{ \frac{k_n}{k_{n+1}} (\lambda_{n+2} - t) - (\lambda_{n+1} - t) \right\}$$

and, in virtue of (6),

$$\frac{k_n}{k_{n+1}} \geqslant \frac{\lambda_{n+1}}{\lambda_{n+2}} \geqslant \frac{\lambda_{n+1} - t}{\lambda_{n+2} - t}.$$

Inequality (20) follows from (7), (21) and (22); and it remains to establish that the matrix satisfies (11) and (12).

In view of (17) and (18), we have

(23)
$$c_{n,0} = k_0 c_n(v_n) = k_0 k_{n+1} \frac{\partial \phi}{\partial u} \Big|_{u=w_n, t=v_n}$$

$$= \delta k_0 (w_n - v_n)^{\delta - 1} k_n \Big\{ 1 + \frac{k_{n+1}}{k_n} \Big(\delta + (1 - \delta) \frac{k(w_n)}{w_n - v_n} \Big) \Big\}$$

$$(\lambda_0 < v_n < \lambda_1 < \lambda_{n+1} < w_n < \lambda_{n+n} n \ge 1).$$

Since $\lambda_{n+2} > \lambda_{n+2} - v_n > \lambda_{n+1} - v_n > \lambda_{n+1} - \lambda_1 \ge \lambda_{n+1} \frac{k_1}{\lambda_0} (n \ge 1)$,

it follows from (22) and (23) that

$$(24) \quad \delta k_{0} \lambda_{n+2} \delta^{-1} k_{n} \left\{ 1 + \frac{k_{n+1}}{k_{n}} \left(\delta + (1-\delta) \frac{k_{n+1}}{\lambda_{n+2}} \right) \right\} \\ \leqslant c_{n,0} \\ \leqslant \delta k_{0} \left(\frac{\lambda_{2}}{k_{1}} \right)^{2-\delta} \lambda_{n+1} \delta^{-1} k_{n} \left\{ 1 + \frac{k_{n+1}}{k_{n}} \left(\delta + (1-\delta) \frac{k_{n}}{\lambda_{n+1}} \right) \right\} (n \geqslant 1).$$

Hence, by (7), (16) and (24),

$$c_{n,0} = O\left\{\xi_n \frac{\lambda_{n+1}^{\delta}}{\xi_n} \left(1 + \frac{k_{n+1}}{k_n}\right)\right\} = o(\xi_n),$$

i.e. the matrix $(c_{n,\nu})$ satisfies (11).

Finally, by (6), (7) and (16)

$$\frac{\lambda_{n+1}}{\lambda_n} \downarrow , \frac{k_n}{\lambda_{n+1}} \downarrow , \frac{k_{n+1}}{k_n} \downarrow , \frac{\lambda_{n+1}}{\xi_n} \delta \downarrow ,$$

and so it follows from (24) that, for $0 \le r \le n-1$,

$$\frac{c_{n,0}}{\xi_n} \leqslant \delta k_0 \left(\frac{\lambda_2}{k_1}\right)^{2-\delta} \frac{\lambda_{r+1}^{\delta}}{\xi_r} \frac{k_r}{\lambda_{r+1}} \left\{ 1 + \frac{k_{r+1}}{k_r} \left(\delta + (1-\delta) \frac{k_{r+1}}{\lambda_{r+2}}\right) \right\} \\
\leqslant \left(\frac{\lambda_2}{k_1}\right)^{2-\delta} \left(\frac{\lambda_{r+2}}{\lambda_{r+1}}\right)^{1-\delta} \frac{c_{r,0}}{\xi_r} \leqslant \left(\frac{\lambda_2}{k_1}\right)^{2-\delta} \left(\frac{\lambda_2}{\lambda_1}\right)^{1-\delta} \frac{c_{r,0}}{\xi},$$

showing that the matrix $(c_{n,\nu})$ satisfies (12).

In what follows, we suppose that

$$x=x(w)$$
 $(w>\lambda_0)$

is the integer such that

$$\lambda_x < w \leqslant \lambda_{x+1}$$

THEOREM 2. If (6), (7) and (16) hold, if $\xi_n/k_n \uparrow$, and if

$$(25) C_n^{1+\delta} = o(\xi_n),$$

then

$$s_n = o\left(\frac{\xi_n}{k_n^{1+\delta}}\right),$$

(27)
$$A^{\delta}(w) = o\left(\frac{\xi_x}{k_x}\right) \quad (w \to \infty),$$

(28)
$$A^{1+\delta}(w) = o(\xi_x) \quad (w \to \infty).$$

Proof. Note first that, by (16), $\xi_n \uparrow$.

In virtue now of (13) and (25), we have

(29)
$$\sigma_{n} = \sum_{\nu=0}^{n} c_{n,\nu} s_{\nu} = C_{n}^{1+\delta} - C_{n-1}^{1+\delta} = o(\xi_{n}),$$

from which it follows, by Theorem 1, Lemmas 1 and 3, and (14), that

$$s_n = o\left(\frac{\xi_n}{c_{n,n}}\right) = o\left(\frac{\xi_n}{k_n^{1+\delta}}\right),$$

i.e. that (26) holds.

Suppose now that $w>\lambda_3$, so that x=x(w)>3. Then

(30)
$$A^{\delta}(w) - \delta \int_{\lambda_{x-1}}^{w} (w-t)^{\delta-1} A(t) dt = \delta \int_{0}^{\lambda_{x-1}} (w-t)^{\delta-1} A(t) dt = \sum_{v=0}^{x-2} b_{x,v} s_{v},$$

where

$$b_{x,\nu} = \delta \int_{\lambda_{\nu}}^{\lambda_{\nu}+1} (w-t)^{\delta-1} dt \quad (0 \leqslant \nu \leqslant x-2).$$

In view of (26), we have

(31)
$$\delta |\int_{\lambda_{x-1}}^{w} (w-t)^{\delta-1} A(t) dt| \leq \delta |s_{x-1}| \int_{\lambda_{x-1}}^{x} (w-t)^{\delta-1} dt + \delta |s_{x}| \int_{\lambda_{x}}^{w} (w-t)^{\delta-1} dt$$

 $\leq |s_{x-1}| k_{x-1}^{\delta} + |s_{x}| k_{x}^{\delta} = o\left(\frac{\xi_{x}}{k_{x}}\right) (w \to \infty).$

Next we observe that

(32)
$$\frac{b_{x,\nu}}{c_{x-2,\nu}} = \frac{\delta(w-t_{\nu})^{\delta-1}}{c_{x-2}(t_{\nu})} (\lambda_{\nu} < t_{\nu} < \lambda_{\nu+1}, 0 \le \nu \le x-2).$$

As t increases from 0 to λ_{x-1} ,

$$\chi(t) = \frac{\delta(w-t)^{\delta-1}}{c_{x-2}(t)}$$

decreases, since, by (21),

$$\frac{\chi'(t)}{\chi(t)} = \frac{1-\delta}{w-t} - \frac{c_{x-2}'(t)}{c_{x-2}(t)} < \frac{1-\delta}{w-t} - \frac{1-\delta}{\lambda_x - t} < 0;$$

and, therefore, it follows from (32) that

$$\frac{b_{x,v}}{c_{x-2,v}} \leqslant \frac{b_{x,v-1}}{c_{x-2,v-1}} \ (1 \leqslant v \leqslant x-2).$$

Consequently, by (30) and partial summation,

(33)
$$\delta \left| \int_{0}^{\lambda_{x-1}} (w-t)^{\delta-1} A(t) dt \right| = \left| \sum_{\nu=0}^{x-2} \frac{b_{x,\nu}}{c_{x-2,\nu}} c_{x-2,\nu} s_{\nu} \right| \\ \leq \frac{b_{x,0}}{c_{x-2,0}} \max_{0 \leqslant m \leqslant x-2} \left| \sum_{\nu=0}^{m} c_{x-2,\nu} s_{\nu} \right|.$$

Now, by (24) and (32),

(34)
$$\frac{b_{x,0}}{c_{x-2,0}} \leqslant \frac{\delta(\lambda_x - \lambda_1)^{\delta - 1}}{\delta^2 k_0 \lambda_x \delta^{\delta - 1} k_{x-1}} \leqslant \frac{1}{\delta k_0} \left(\frac{\lambda_2}{k_1}\right)^{1 - \delta} \frac{1}{k_{x-1}} .$$

Also, by Theorem 1 and Lemmas 1 and 2, it follows from (29) that

(35)
$$\max_{0 \leqslant m \leqslant x-2} \left| \sum_{\nu=0}^{m} c_{x-2,\nu} s_{\nu} \right| \leqslant \max_{0 \leqslant r \leqslant x-2} \frac{c_{x-2,0}}{c_{r,0}} |\sigma_{r}| = o(\xi_{x-2}).$$

Hence, by (33), (34) and (35),

(36)
$$\int_{0}^{\lambda x-1} (w-t)^{\delta-1} A(-t) t = o\left(\frac{\xi_{x-1}}{k_{x-1}}\right) (w \to \infty);$$

and conclusion (27) follows from (30), (31), and (36).

We are now in a position to establish (28), the one outstanding conclusion. By (35) and (27),

$$A^{1+\delta}(\lambda_n) = C_{n-2}^{1+\delta} + k_{n-1} A^{\delta}(\lambda_n) = o(\xi_{n-2}) + o\left(k_{n-1} \frac{\xi_{n-1}}{k_{n-1}}\right) = o(\xi_{n-1}),$$

and consequently, by (27) again,

$$\begin{split} A^{1+\delta}(w) = & A^{1+\delta}(\lambda_x) + (1+\delta) \int_{\lambda_x}^w A^{\delta}(t) dt \\ = & o(\xi_{x-1}) + o\left(k_x \frac{\xi_x}{k_x}\right) = o(\xi_x) \ (w \to \infty). \end{split}$$

THEOREM 3. If (6) and (7) hold, and if $C_n^{1+\delta} = o(\lambda_{n+1}\lambda_{n+2}^{\delta})$, then $A^{1+\delta}(w) = o(w^{1+\delta}) \ (w \to \infty).$

Proof. Take $\xi_n = \lambda_{n+1} \lambda_{n+2}^{\delta}$; then

$$\frac{\xi_n}{\lambda_{n+1}\delta} \to \infty \text{ and } \frac{\xi_{n+1}}{\lambda_{n+2}\delta} \frac{\lambda_{n+1}\delta}{\xi_n} = \left(\frac{\lambda_{n+3}}{\lambda_{n+2}}\right)^{\delta} \left(\frac{\lambda_{n+2}}{\lambda_{n+1}}\right)^{1-\delta} > 1,$$

so that ξ_n satisfies (16). Also, by (6), $\xi_n/k_n \uparrow$. Consequently, by Theorem 2,

$$A^{1+\delta}(w) = o(\lambda_{x+1}\lambda_{x+2}\delta) = o(\omega^{1+\delta})(w \to \infty)$$

MV 11

since, in view of (6),

$$\frac{\lambda_{x+1}\lambda_{x+2}\delta}{w^{1+\delta}} < \frac{\lambda_{x+1}}{\lambda_x} \left(\frac{\lambda_{x+2}}{\lambda_x}\right)^{\delta} = O(1).$$

Since (R, λ, μ) is known to be regular and (C, λ, μ) is regular, by Lemma 4, the following theorem is an immediate consequence of Theorem 3.

THEOREM 4. If
$$\frac{\lambda_{n+1}}{\lambda_n} \downarrow$$
, $\frac{\Delta \lambda_{n+1}}{\Delta \lambda_n} \downarrow$ and $1 < \mu < 2$, then
$$(C, \lambda, \mu) \subseteq (R, \lambda, \mu).$$

REFERENCES

- D. Borwein, "On a generalised Cesàro summability method of integral order", Tôhoku Math. Jour., 18 (1966), 71-73.
- 2. D. Borwein, "On a method of summability equivalent to the Cesàro method", Jour. London Math. Soc., 42 (1967), 339-343.
- D. BORWEIN AND D.C. RUSSELL, "On Riesz and generalized Cesàro summability of arbitrary positive order," Math. Zeit., 99 (1967), 171-177.
- 4. H. Burkill, "On Riesz and Riemann summability", Proc. Cambridge Phil. Soc., 57 (1961), 55-60.
- 5. G. H. HARDY, Divergent Series (Oxford, 1949).
- 6. W. B. Jurkat, "Über Rieszsche Mittel mit unstetigem Parameter", Math. Zeit., 55 (1951), 8-12.
- W. B. JURKAT, "Über Rieszsche Mittel und verwandte Klassen von Matrixtransformationen", Math. Zeit., 57 (1953), 353-394.
- 8. W. B. Jurkat and A. Peyerimhoff, "Mittelwertsätze bei Matrix-und Integraltransformationen", Math. Zeit., 55 (1951), 92-108.
- 9. B. KUTTNER, "On discontinuous Riesz means of type n", Jour. London Math. Soc., 37 (1962), 354-364.
- 10. A. Meir, "An inclusion theorm for generalized Cesàro and Riesz means", Candian Jour. Math. (to appear).
- 11. A. PEYERIMHOFF, "On discontinuous Riesz means", Indian Jour. Math., 6 (1964), 69-91.
- D. C. Russell, "On generalised Cesàro means of integral order", Tohoku Math. Jour., 17 (1965), 410-442.

University of Western Ontario London Canada