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It is the purpose of this paper to give a concise account® of inclusion rela-
tions involving Riesz and generalised Cesaro summability, and also to finalise
one aspect of this problem by proving a best-possible inclusion theorem.

For x a non-negative real number, {4,} a strictly increasing unbounded real
sequence with 1,20, the Riesz sum of an arbitrary real or complex series Ya

v

is A@)= 3 (@-1)a, (020);

Av<o
the series ) a, is summable by the Riesz method (R, 4, k) to s if 04" (w) =5
as w —»co. When o —co through the sequence {4,}, we obtain the definition of
“discrete” Riesz summability (R*, 4, k), and we may then relax the restriction
on x to x> —1; thus ) a, is summable (R*, A, x) to s if A;7%A*(1,) —s. When
Riesz [16] introduced his “typical means”, he found that the method with the
discrete matrix, denoted here by (R*, 4, x), had, for A,=n and for higher values
of k, properties totally unlike those of the Cesiro method (C, k), but that the
close relationship with (C, x) could be restored by introducing the continuous
parameter . However, this causes difficulties in many instances (particularly
in inclusion theorems and summability factors) because the “continuous”
(R, 4, ¥) method has no inverse; this has led to the recent introduction of re-
lated generalised Cesaro methods.

Such a method (C, 4, k) was first defined by JURKAT [8], who proved a
number of properties of this method, subject to various restrictions on the
sequence {4,}: let

K=p+é (r=0,1,2,...; 0<86<1),

pa— " W f—
€=n="Y ai; ¢ [ ]=CT,
v=0
and C*[1] be obtained from C¥ by putting s,=1 for every n, or (equivalently)
ay=1,a,=0 (v+0);

— Il L A -1, =
sz____‘__ A l — 6‘ v+p+1 v P
n (p+1)r((>+1)y§0 v( n+1 ’Lv) A’v-#—l_’lv Cv‘

! This account has been given by D.C. RusseLL in a talk at the International Congress
of Mathematicians, Moscow, August 1966.
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The generalised Cesaro mean is then defined by
#0=s,, 5=C"[s]/C"[1],

and Y a, is summable (C, 4, x) to s if .

However, we have found that a different definition of the summability
method for non-integral x yields results with fewer restrictions on {4} (in
some cases with no restrictions). Accordingly we define the generalised Cesaro

“mean

" 8
tes t=g= £ (1-25) - (i) (50m) @

v=0 An-i-l j’n+p n+p+1

the series ¥ a, is summable (C, 4, ) to 5 if #; —5. A definition of (C, 4, —1) has
been given by Mappox [/2].

Several authors have investigated inclusion relations between the summa-
bility methods defined above. While there are also a number of Tauberian
results, we consider here only full inclusion, in the sense that no restriction on
the series ) a, (other than its summability) is postulated. Results on absolute
summability are also omitted. We write 4 = B to mean that each series summable
— A is also summable— B to the same value; if at the same time we also have
B< A then we write 4 ~ B. We use A< B to mean that B is strictly stronger than
A, and denote convergence (the identity transformation) by I; we denote

throughout
Ahy=Ay—An+15 Ay=Ap i1 [y 1—4).

(a) Relations between (C, A, k) and (C, 4, x).
The two definitions coincide when A,=0 and either 0=x=1 or k=p
(a non-negative integer); consequently, for any {4,},

(C,4K)~(C,Ax) (0=x<1),
(C.Ap~(Chp (p=0,1,2,..).
(b) Relations involving (R*, 1, k).
(R,2,k)=(R*, A4, x) (k=20) (trivial),
(R*, 4, K)=(R, 4, k) (0=k=1) JURKAT [7],
(R*, A, ¥)=(C, 4, k) (0=xZ1) (definition),
(R*, L, K)=(R,A4x) if 1<k<log3flog2=1-58...
and if A, /A, AA,yq/A4,—1
PEYERIMHOFF [15],
KuUTTNER [/1],

KUTTNER [10],

(R*1,2)=(R,4,2) = (R, A,2)~I
A,=0(1) = (R*, A, 2)~I

k>2 = Ic(R* " k) forsome c=c(x)>1 KUTINER [10].
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(c) The case A,=n.

(R,n,k)~(C,x)  (x=0) Riesz [17],

(R*,n,1)~(C, x) {—1<x§1 Riesz [18]
1<x<2 Kurtner [9],
" k=2,3 RiEsz [18]
R, n, ) £(C, x) x©=2,3,4, ... PEYERIMHOFF [/4]
_ K22 KUTTNER [9],
(C; R, p)E(Cg n: p)E(Cs p) (p=0, 1, 2, ...) (definitlon)’
(Con, k) ~(C,k)  (k=0) ToRESE L

(C,n,k)~(C, k) (x=0)

(d) Relations between (R, 2, x) and (C, 4, k).

The cases nggl and x an integer are (by (a) above) contained in the
results for (C, 4, x). Otherwise we have:

(R, 2,)~(C, 4, k)

BorwEIN [3].

if k>1, x non-integral, and if A, 7, |44,| monotonic,

n |42, "7 JURKAT [8].

(e) Relations between (R, A, ) and (C, A, K).
The case 0=x =1 is already covered in (b) above. In addition, we have:

(Csi:p)g(R:A:P) (p=23 3: 4: )
without restriction on {4,} RusseLL [19];
(C. A, 1)=(R, 4 x) (1<k<?2)

when
A1 fA s AdagfAAN
In the opposite direction:

(R, A, p)=(C,4,p)

BorwEIN [4].

=2,3,4,...
when @ :

A,
o A JURKAT [8],

O<az=l, 41— Sb<w BurkiLL [5],
or (which includes both these results) when

4,-1=0(4,)  (and without restriction on {4,; when p=2) RusseLL [79],
or (which is independent of the previous case) when
A’n+ 1= O(ln)

and, finally, without restriction on {4}

BorRWEIN [2],
MEIR [13].
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The non-integral case corresponding to this last result has not hitherto
been considered (except by JURKAT for (C, 4, x)), and it is the object of this
paper to deal decisively with this by proving the following theorem, in which
there is no restriction on {4,} other than the basic assumption of unbounded
monotonicity.

Theorem. (R, 1, k)= (C, A, k) (x=0).

This will incidentally show that (C, 4, x) is regular for every ©=0 (see also
BorRWEIN [4, Lemma 4]). Since the theorem is trivially true for 0=x= 1,
we may suppose that x=p+ 3, where p is a positive integer and 0<d=1. We
require the following lemma.

Lemma. Let p be a fixed positive integer. For n=1,2,3, ..., there is an
integer m=m(n), nSm=n+p, and numbers c,;, ®,; (j=0, 1, ..., p) such that

(1) |cnj!§Kp5 /’Lméwﬂjélm+1 (j=091:"'9p)a
and

x X 2 % P
R
@ Ant1 Anwpt =07 @y

' Proof of the Lemma. This is due to BoRWEIN [2] and MER [73]%; since the
details are of importance in the sequel, we sketch them here.
Case (). If Ayspr1/A=(p+1)P*' take m to be an integer, n=m=n+p,
such that

(3) /lm+1_j‘m= max (Ai+1_li)
nsign+p
and define
j+1 .
wn}'=im+ p+1 (A1 =) (j=0,1,...,p).

BORWEIN [2] shows that
P
(’q'n+1_x) (An+pﬂx): Z ynj(wnj_x)p
j=0

where
e S@+DIp+1?P (j=0,1,...,p);
thus

Ynj m#j
Anit oo Antp
and (1) and (2) follow.

Case (ii). If 2,4 p41/4n>(p+1)?*! take m to be the integer, n=Sm=n+p,
such that

|an!E

A i 2
<1yl (Z2L) @+ D1 @177,

@ Tattspit, and Hlgprr (rzizm-),

13 1

2 We are indebted to Dr. MeR for showing us the manuscript of this paper prior to
publication, and for allowing us to quote his result.
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and define
0=+ DA (i=0,1,...,p).

This definition is given by MEIR [/3], who shows that if the ¢, ; are then defined
by (2), it can be deduced that (1) holds.

Proof of the Theorem. On putting x=2, in (2), multiplying through by
(1—24,/2,4p+1)° @, and summing from v=0 to m, we obtain

r m
K__ +4 — =
(5) tn=tf = .Zocnjwnjp’q'njp-ﬁ—l 2(wnj_lv)p(ln+p+1_zv)ﬁav'
F= v=0
Denote, for clarity, o=w, ;, =4, , ; ; then the inner sum on the right of (5)is

SnjE i (mw;{v)p(t—iv)é a,
v=0
:f (@—u)?(t—u)’ dA(u)

T B ?
=(ED—_T)!JA" (u) (%) [(w—w)?(t—u)] du

on integ{ath‘ng by parts p times. A further integration by parts now gives, on
using Leibniz’ formula for differentiating a product,

P w

©)  S,=AT@) =)+ Yk, [ A% @—u) (- du
r=0 (1]
=S,;+Sn;, say,

where the coefficients k, depend only on r and .

We suppose, as we may without loss of generality, that Y a, is summable
(R, f{,‘x) to zero, r}amely that A*?(y) =0 (u"*?). Then, by the limitation theorem
for Riesz means, in a form given by BORWEIN [/, Lemma 2; in o-form] we have

AP (@)=0(w’A})  (since L, 2w=A,, ).

Using this estimate in the definition (6) of .S/ ;> we obtain
’ p _ P
T!= zoc,,jw P70 8 i=o(D) Y ¢y AL(1~ )P,
J= Jj=0

We now consider the choices of m detailed in the proof of the lemma, and note
that 4, =4, Sw0=1,44 SAnsp4+1 =t Then in case (i), from (3), -

Am (1_2) g Aﬁ'm+1(”l'n+p+1 —'Q‘m)
t Antpr1(Ams1—4m)

=p+1;
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while in case (ii) we use (4) and note that A, 1/4,,>p +1 implies 4, <(p+1)/p=
p+1, so that
A, (1—%) <p+1.
Hence, by (1),
™ Ti=o() 3 o (p+ 1)’ =0(0).

Turning to S,’; we see that, for each r in 0=r=p, [(0— u)/(t—u)]" decreases

as u increases in (0, w); consequently, by the Second Mean Value Theorem for
integrals, there is a £=¢(w, t) in 0= &< such that

@

| AP () (w—u) (t—u)’ """ tdu

RG]

=o(w”*?).

j;A"(v.')(tf—u)"_1 du

In the last step we have used /7 < 1, the hypothesis A" *(u)=0(u*?), and the
o-form of the Riesz Mean-Value Theorem (see, for example, CHANDRESEKHARAN
and MINAKSHISUNDARAM [6, Lemma 1.42]). Employing this result in the de-
finition (6) of S, and making use of (1), we obtain

P P
®) Pl= N ope PESG= Y, ;@ Pt 0(@" %) =0(1).
j=0 i=0

Finally, substitution of the estimates for 7, and 7" given by (7) and (8)
into (5) gives
=T, +T,'=0(1),

so that ) a, is summable (C, 4, ) to zero, and the proof is complete.
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