ON A METHOD OF SUMMABILITY EQUIVALENT TO THE CESÀRO METHOD

D. BORWEIN

1. Introduction

Suppose throughout that $\mu = m + \delta$ where m is a non-negative integer and $0 \le \delta < 1$, and let

$$\Pi_{\mu}(x) = m! \binom{x+m}{m} (x+m+1)^{\delta} = (x+1) \dots (x+m) (x+m+1)^{\delta}.$$

We define a new method of summability (C^*, μ) as follows:

A series $\sum_{n=0}^{\infty} a_n$ is said to be summable (C^*, μ) to s if

$$\sigma_n = \frac{1}{\prod_{\mu}(n)} \sum_{r=0}^n \prod_{\mu}(n-r)a_r \rightarrow s \text{ as } n \rightarrow \infty;$$

if, in addition,

$$\sum_{n=0}^{\infty} |\sigma_n - \sigma_{n+1}| < \infty,$$

the series is said to be absolutely summable (C^*, μ) to s. When μ is an integer the method (C^*, μ) reduces to the standard Cesàro method (C, μ) . The "discontinuous" Riesz method (R^*, α) , defined as above with $(x+1)^{\alpha}$ $(\alpha > -1)$ in place of $\Pi_{\mu}(x)$, is identical with (C^*, α) in the range $0 \le \alpha \le 1$. It is known that in the range $-1 < \alpha < 2$ the methods (R^*, α) and (C, α) are both equivalent and absolutely equivalent (see §2 for an explanation of the terminology), but that these equivalences break down whenever $\alpha \ge 2$ (Riesz [9], Peyerimhoff [8], Kuttner [5]).

The object of this note is to prove the following theorem, the known cases of which are $\mu = 0, 1, \dots$ and $0 < \mu < 1$.

THEOREM. The methods (C, μ) and (C^*, μ) are both equivalent and absolutely equivalent for all $\mu \geqslant 0$.

2. Nörlund methods

Let $\{p_n\}$, $\{q_n\}$ be sequences of non-negative real numbers with $p_0 > 0$, $q_0 > 0$, let

$$P_n = \sum_{r=0}^n p_r, \quad Q_n = \sum_{r=0}^n q_r$$

and let

$$P(z) = \sum_{r=0}^{\infty} P_n z^r, \quad Q(z) = \sum_{r=0}^{\infty} Q_n z^r.$$

When both power series have non-zero radii of convergence, we define

associated sequences $\{k_n\}$, $\{l_n\}$ and functions k(z), l(z) by the identities

$$\frac{Q(z)}{P(z)} = \sum_{n=0}^{\infty} k_n z^n = k(z), \quad \frac{P(z)}{Q(z)} = \sum_{n=0}^{\infty} l_n z^n = l(z).$$

The Nörlund method (N, p) is defined in the same way as the method (C^*, μ) but with

$$\sigma_n = \frac{1}{P_n} \sum_{r=0}^n P_{n-r} a_r;$$

and (N, q) is similarly defined.

The method (N, p) is said to be regular (absolutely regular) if every convergent (absolutely convergent) series with sum s is summable (absolutely summable) by (N, p) to s. A necessary and sufficient condition for (N, p) to be regular is (see [2; p. 64])

$$\frac{p_n}{P_n} \to 0,\tag{1}$$

in which case the series defining P(z) is convergent for |z| < 1. Necessary and sufficient conditions for (N, p) to be absolutely regular (Mears [6], Knopp and Lorentz [4]) are (1) and

$$\sup_{r\geqslant 1} \sum_{n=1}^{\infty} \left| \frac{P_n}{P_{n+r}} - \frac{P_{n-1}}{P_{n+r-1}} \right| < \infty.$$
 (2)

The methods (N, p) and (N, q) are said to be equivalent (absolutely equivalent) if every series summable (absolutely summable) by either of them to s is summable (absolutely summable) by the other to s.

It is known (Riesz [9], Miesner [7; Cor. 1]; see also [2; p. 67]) that if the methods (N, p) and (N, q) are regular (absolutely regular) and if

$$\sum_{0}^{\infty} |k_n| < \infty \text{ and } \sum_{0}^{\infty} |l_n| < \infty,$$

then the two methods are equivalent (absolutely equivalent). It is also known (see [10; p. 246]) that if $\sum_{n=0}^{\infty} |r_n| < \infty$ and $r(z) = \sum_{n=0}^{\infty} r_n z^n$ is not zero for $|z| \le 1$, then the Taylor expansion of $\frac{1}{r(z)}$ is absolutely convergent for |z| = 1.

We combine the above two results in the following lemma.

Lemma 1. If the methods (N, p) and (N, q) are regular (absolutely regular) and if

$$\sum_{n=0}^{\infty} |l_n| < \infty$$

and l(z) is not zero for $|z| \le 1$, then the methods are equivalent (absolutely equivalent).

ON A METHOD OF SUMMABILITY EQUIVALENT TO THE CESARO METHOD 341

3. The methods (C, μ) and $(C^* \mu)$

From now on we shall suppose that

$$0 < \delta < 1$$

and that

$$P_n = \Pi_{\mu}(n) = m! \binom{n+m}{m} (n+m+1)^{\delta}, \quad Q_n = \binom{n+\mu}{n},$$

so that

$$P(z) = \sum_{n=0}^{\infty} \prod_{\mu}(n) z^n, \quad Q(z) = (1-z)^{-\mu-1}$$

and

$$l(z) = \sum_{n=0}^{\infty} l_n z^n = (1-z)^{\mu+1} P(z).$$

The methods (C^*, μ) and (C, μ) are thus the Nörlund methods (N, p) and (N, q) respectively.

It is familiar that (C, μ) is both regular and absolutely regular; and (C^*, μ) is regular since

$$\frac{\Pi_{\mu}(n-1)}{\Pi_{\mu}(n)} \to 1 \text{ as } n \to \infty.$$

Further, setting

$$\psi(x) = \frac{\Pi_{\mu}(x)}{\Pi_{\mu}(x+r)} ,$$

we see that, for $x \ge 0$, r = 1, 2, ...,

$$\frac{\psi'(x)}{\psi(x)} = \frac{1}{x+1} + \dots + \frac{\delta}{x+m+1} - \left(\frac{1}{x+1+r} + \dots + \frac{\delta}{x+m+1+r}\right) > 0,$$

so that, for $n = 1, 2, \ldots$,

$$\frac{\Pi_{\mu}(n)}{\Pi_{\mu}(n+r)} > \frac{\Pi_{\mu}(n-1)}{\Pi_{\mu}(n+r-1)}$$
.

It follows that (2) is satisfied with $P_n = \prod_{\mu}(n)$ and hence that (C^*, μ) is absolutely regular.

LEMMA 2. For x > -m-1,

(i)
$$\Pi_{\mu}(x) = \sum_{r=0}^{m} (-1)^r j_r (x+m+1)^{\mu-r}$$
 where each $j_r > 0$,

(ii)
$$(-1)^k \left(\frac{d}{dx}\right)^{m+1+k} \Pi_{\mu}(x) > 0, \quad (k=0, 1, \ldots).$$

Proof. Conclusion (i) is immediate. By (i),

$$\left(\frac{d}{dx}\right)^{m+1} \Pi_{\mu}(x) = \sum_{r=0}^{m} (-1)^{r} j_{r} (\delta - r) \dots (\delta + m - r) (x + m + 1)^{\delta - 1 - r}$$

$$= \sum_{r=0}^{m} b_{r} (x + m + 1)^{\delta - 1 - r},$$

where each $b_r > 0$ since $0 < \delta < 1$; and conclusion (ii) follows.

LEMMA 3.

$$\sum_{n=0}^{\infty} |l_n| < \infty.$$

Proof. For |z| < 1, by Lemma 2 (i),

$$l(z) = \sum_{n=0}^{\infty} l_n z^n = \sum_{r=0}^{m} (-1)^r j_r (1-z)^r l_r(z)$$

where

$$l_r(z) = \sum_{n=0}^{\infty} l_{n,r} z^n = (1-z)^{\mu-r+1} \sum_{n=0}^{\infty} (n+m+1)^{\mu-r} z^n.$$

By a trivial modification of a known result (Miesner [7; Lemma 5])

$$\sum_{n=0}^{\infty} |l_{n,r}| < \infty \quad (r=0, 1, ..., m),$$

and the required conclusion follows.

4. Proof of the theorem

In view of Lemmas 1 and 3 it suffices to show that l(z) is not zero for $|z| \le 1$.

Let

$$F(z) = (1-z)^{-\delta} l(z) = (1-z)^{m+1} \sum_{n=0}^{\infty} \Pi_{\mu}(n) z^{n}.$$

Then, for |z| < 1,

$$F(z) = \sum_{n=0}^{\infty} c_n z^n,$$

where

$$c_n = (-1)^{m+1} \sum_{r=0}^{m+1} (-1)^r \binom{m+1}{r} \prod_{\mu} (r+n-m-1) \quad (n=0, 1, \ldots),$$

since $\Pi_{\mu}(-k) = 0$ for k = 1, 2, ..., m + 1.

By a standard result, we have for n = 0, 1, ...,

$$c_n = \left[\left(\frac{d}{dx} \right)^{m+1} \Pi_{\mu}(x) \right]_{x=x_1} \text{ and } c_n - c_{n+1} = -\left[\left(\frac{d}{dx} \right)^{m+2} \Pi_{\mu}(x) \right]_{x=x_2},$$

where $n-m-1 < x_1 < n$ and $n-m-1 < x_2 < n+1$.

Hence, by Lemma 2, $c_n > c_{n+1} > 0$ for n = 0, 1, ..., and consequently, by a theorem of Kakeya [3] (see also [5]),

$$(1-z)^{-\delta} l(z)$$
 is not zero when $|z| \le 1$, $z \ne 1$.

It remains only to show that $l(1) \neq 0$ and this can be done as follows. By a known result (see [1])

$$l(1) = \lim_{x \to 1-} l(x) = \lim_{x \to 1-} (1-x)^{\mu+1} \sum_{n=0}^{\infty} \frac{\prod_{\mu}(n)}{\binom{n+\mu}{n}} \binom{n+\mu}{n} x^n$$

$$= \lim_{n \to \infty} \frac{\prod_{\mu}(n)}{\binom{n+\mu}{n}} = \Gamma(\mu+1) > 0.$$

ON A METHOD OF SUMMABILITY EQUIVALENT TO THE CESARO METHOD 343

References

- D. Borwein, "On a scale of Abel-type summability methods", Proc. Cambridge Phil. Soc., 53 (1957), 318-322.
- 2. G. H. Hardy, Divergent series (Oxford, 1949).
- 3. S. Kakeya, "On the limits of the roots of an algebraic equation with positive coefficients", Tôhoku Math. J., 2 (1912), 140-142.
- K. Knopp and G. G. Lorentz, "Beiträge zur absoluten Limitierung", Archiv der Math., 2 (1949), 10-16.
- B. Kuttner, "On discontinuous Riesz means of type n", Journal London Math. Soc., 37 (1962), 354-364.
- F. M. Mears, "Absolute regularity and the Nörlund mean", Annals of Math., 38 (1937), 594-601.
- W. Miesner, "The convergence fields of Nörlund means", Proc. London Math. Soc. (3), 15 (1965), 495-507.
- A. Peyerimhoff, "On convergence fields of Nörlund means", Proc. American Math. Soc., 7 (1956), 335-347.
- M. Riesz, "Sur l'équivalence de certaines méthodes de sommation", Proc. London Math. Soc. (2), 22 (1924), 412-419.
- 10. A. Zygmund, Trigonometric series, Vol. 1. (Cambridge, 1959).

University of Western Ontario, London, Canada.