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ON A METHOD OF SUMMABILITY EQUIVALENT
TO THE CESARO METHOD

D. BORWEIN

1. Introduction
Suppose throughout that u=m+8 where m is a non-negative integer
and 0<8 <1, and let

Hﬂ(m)=m!(x;m) (@+m+1) = @+ 1)... (x+m) (@ +m+ 1),

We define a new method of summability (C*, u) as follows:

=]
A series 3] a, is said to be summable (C#, u) to s if
0

1 n
o, = goﬂﬁ(n—r)ar—m a8 n—>o0;

n Hﬂ’('ﬂ) v

if, in addition,

s o]
b [Un_o'wrll < 00,
n=0

the series is said to be absolutely summable (C*, u) to s. When p is an
integer the method (C'#, u) reduces to the standard Cesaro method (C, ).
The * discontinuous” Riesz method (R*, «), defined as above with
(x+1)* (¢> —1) in place of Il (), is identical with (C*, «) in the range
0<a<1. It is known that in the range—1<a <2 the methods (R¥, «)
and (C, «) are both equivalent and absolutely equivalent (see §2 for an
explanation of the terminology), but that these equivalences break down
whenever « > 2 (Riesz [9], Peyerimhoff [8], Kuttner [5]).

The object of this note is to prove the following theorem, the known
cases of which are p=0,1, ... and O<p<1.

TaEOREM. The methods (C, p) and (C#, p) are both equivalent and
absolutely equivalent for all u > 0.

2. Norlund methods

Let {p,}, {¢,} be sequences of non-negative real numbers with p,> 0,
¢o >0, let

Pn= Eprs Qn= Egr
r=0 r=0
and let o @
Pr)= X P,2" Qz)= %ann-

r=0

When both power series have non-zero radii of convergence, we define
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associated sequences {&,}, {/,} and functions k(z), I(z) by the identities

Do
ey

The Norlund method (N, p) is defined in the same way as the method
(C#, 1) but with

= 3 L=l
n=>0

and (X, ¢) is similarly defined.

The method (&, p) is said to be regular (absolutely regular) if every
convergent (absolutely convergent) series with sum s is summable
(absolutely summable) by (N, p) to s. A necessary and sufficient condition
for (N, p) to be regular is (see [2; p. 64])

En (1)

in which case the series defining P(z) is convergent for |z| < 1. Necessary
and sufficient conditions for (N, p) to be absolutely regular (Mears [6],

Knopp and Lorentz [4]) are (1) and
< P B
su L < 0. 2
T?:lp 'ﬂ§1 B ntr £ ntr—1 2 )

The methods (N, p) and (&, ¢q) are said to be equivalent (absolutely
equivalent) if every series summable (absolutely summable) by either
of them to s is summable (absolutely summable) by the other to s.

It is known (Riesz [9], Miesner [7; Cor. 1]; see also [2; p. 67]) that
if the methods (N, p) and (&, ¢) are regular (absolutely regular) and if

Y| k,| <0 and X|1,|< oo,
0 0

then the two methods are equivalent (absolutely equivalent). It is also

known (see [10; p. 246]) that if ¥ |r,|<co and r(z)= 3 7, 2" is not zero
n=0 n=0
for |z|<1, then the Taylor expansion of le) is absolutely convergent

for |z|=1.
We combine the above two results in the following lemma.

Lemma 1. If the methods (N, p) and (N, q) are regular (absolutely
requlor) and if

3 |1,] <o
n=>0

and U(z) is not zero for |z| <1, then the methods are equivalent (absolutely
equivalent),
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3. The methods (C, p) and (C# u)
From now on we shall suppose that

O<d<l1

and that
- s n+m) A » (ﬂﬂlv)
.Pn Hﬂ(ﬂ:) m-( m (n+m+l) ] Qn n )
SO tha;t «©
Pz)= ;()H,u(n)zn, Q(z)=(1—z)=#1
and

l(2)= 3 1,20 =(1—z)w+ P(z).
n=0

The methods (C*, u) and (C, p) are thus the Noérlund methods (N, p)
and (I, q) respectively.

It is familiar that (C, w) is both regular and absolutely regular; and
(C*, k) is regular since

I1,(n—1)
—_— =1 as n-—>oo.
I, (n)
Further, setting 1 ,(2)
via)= T, (wt7) °
we see that, forx>0,r=1,2, ...,

i (x) 1 1 5

= — $uat - 4ot ————— | >0,
d(x)  a+l x+m+1 x+1+r T4+m+14r
so that, for n=1, 2, ...,

10, (n) I, (n—1)

2 - :
11, (n+r) M, (n+r—1)

It follows that (2) is satisfied with P, =11 «(n) and hence that (C'¥, u)
is absolutely regular.

Levma 2. Forax> —m-—1,

(i) T, (w)= 3} (~ 1), (+m+ 1)s—" where each 5> C,
r=0
d

m+1+k
(i) (_1)k(%) ,@)>0, (k=0,1,..).

Proof. Conclusion (i) is immediate. By (i),

(d i 3 (—1y5, (3 5+ 1y1-1-r
=) L@= % (17,6 mer) @tm+)

r=0

143

b(x+m+ 1)1+

r=0

i

where each b,> C since 0 <8 <1; and conclusion (ii) follows.
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Lemma 3. =
S [1] <co.
n=0

Proof. For|z|<1, by Lemma 2 (i),
A= 3 b= 3 (~1)5,(1-2r,()

n=0 =0

where I 5
L(z)= X, ,2r=(1-2)" 3 (n+m+41)pTrzn,
n=0

n=0

By a trivial modification of a known result (Miesner [7; Lemma 5])
% Iln,'r[ <& (#=01..., m),
n=0

and the required conclusion follows.

4. Proof of the theorem
In view of Lemmas 1 and 3 it suffices to show that I(z) is not zero for
|z|<1.

Letv @
F(z)=(1-2)71(z) = (L—2)™+ 3 I (n) 2™
n=0
Then, for |z| < 1, o
n=0
where -
= (=1 S 1y (" T Lt nome) =0,1,.0,
7=0 L

since H,(-k)=0fork=1,2,.,m+1.
By a standard result, we have forn=0, 1, ...,

d \m+l d \m+2
a=[(z2) @) and o,—cpn=-| (1) )

where n—m—1l<z, <n and n—m—1<z,<n+1.
Hence, by Lemma 2, ¢,>c,,;>0 for n=0, 1, ..., and consequently,
by a theorem of Kakeya [3] (see also [5]),

(1—2)"%1(z) is not zero when |2|<1, z#1.

It remains only to show that I(1)# 0 and this can be done as follows. By
a known result (see [1])

3 : g 1L (m+uy .,
limlnermint - B (1)
n

e
_}:_]f[:, (n+,u =l(p+1)>0.

N

e r—

C——

O ———

i_
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