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The object of this paper is to examine Borel-type methods of summability,
to define strong Borel-type methods and investigate their relations with ordinary
and absolute Borel-type methods.

1. Introduction. Suppose throughout that o, a,(n = 0,1, - - +) are arbitrary
complex numbers, that & > 0, that 8 is real and that N is a positive integer
greater than —@B/a. Let x be a real variable in the range [0, c0): in all limits
and. order relationship involving z, it is to be understood that z — co.

n
Defitie 5= D@, ; $5=0, ow=0—5ri

v=0

Borel-type sums are defined as follows:

o aﬂxaﬂ+ﬂ—1 o2 Snxunul—ﬁ—l
aa,,@(x): EF(Q?ZJHQ) ’ Sa,ﬁ(-r): EN IT((X?’E*FB) .

It is known that the convergence of either series for all =0 implies
the convergence, for all z = 0 of the other (See [1]).
Borel-type means are defined as follows:

A olx)= j; et a, )dt,

Sa () =cte™%5, o(x), Too(x)=e"a, o(Z).

Borel-type methods are defined as follows:
1. Summability:

(i) If A, 4(x)— ow, we say that s, — (B, a, @),
(i) If S, sz)— o, we say that s, — o(B, a, B).

2. Absolute Summability:
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(i) I Ans(x) — on and A, ) is of bounded variation with respect to
in the range [0, o) we say that s,—o|B,a Bl.
() I S.elx)—0 and S, () is of bounded variation with respect to x

in the range [0, o), we say that s, — o|B,a, 8.

3. Strong Summability:
(i) I

%

[ ¢14us®)—oxldt=oe),
0
we say that s, — B, a, 8]

(i) If

f " 1S pal) — ol dE=0(e?),

o

we say that s, — o B, a, 8]

4. Boundedness:
(1) ¥ A, (x)=0(), we say that s,=0(Q) (B,a, 8).
(i) Y S.s(x)=0Q), we say that 5,=0Q) (B, a, 8).

5. Strong Boundedness:
(1) If
J; etlAc:,,B—l(t)—‘O'Nl‘ dt:O(em),

we say that 5,=0() [B, a, 8]
(i) H

[ ¢1505-0—oldt=0,

0

we say that 5,=0() [B, a, 8]

The summability methods (B, 1,1) and (B,1,1) are the Borel exponential
and the Borel integral methods respectively as given in ‘Divergent Series’. (See
[3] p.182). The Borel-type summability methods (B, @, §) and (B, a, B) are due
to Borwein (See [2]). The ideas of absolute summability are also due to Borel
himself. (See [3] p.184).

We assume henceforth that the series defining a. «x), 5. 4(x) are convergent

E——
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for all 2 =0 and, since the choice of N is i i
= 1, clearly immaterial, that alN
= 2; so that the functions o

aa:,.ﬁ‘fl(x)a aa,ﬂ(x): Sa:,,ﬂ-—l(x)z Sa,,B(x)
are all continuous for x = 0. Also, we assume, without loss of generality, that
ay=a,= +++ =ay_,=0, so that oy=0.

Given a function, f(x), continuous for x =0 we write for x =0,
f@)=fay )=o) [ (z-tpeds 6> 0)
]

This section ends with the statement of several known results which will
be used throughout the paper:

I If v >0 and f(z)=s.4z), then, for >0

> an+A+Y-1
f")’(x)zsﬂ,ﬂJr (x): M______
! ;‘, T(an+B+7)

II aa,,@(l‘) :‘S-R,B(x) _Scr,ﬂ+a(x)-
I [ ea, eyt
D

oo

= [T(a)} fo e s, o(e) du f ) t* et dr. (See [1])

2. Preliminary Results. The following lemmas are required:
LEMMA 1.

( 1 ) ad;; A“,ﬁ(x) = B—maa,ﬂ(x)!

(@) L S s@)=ae* {5,0.s(0) —s0s(@)},

d
(111) Zﬁl’.’“ Ta,ﬂ(x) =ae™" {aa,ﬁ—l(x) = aaz.ﬂ(x)}:
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Then, for 0 < xy <, <+ < x

I

(iv) A pa(T) =€ 00 (2) + ff ¢ o(8)dt = A o) + Au ), nz
| “ | e~ w(z,..)|

() Supm@) =B S0 8s(2)= S @)+ S T

L —ae-a, g(2)=T, i)+ Tes(). = (n .

(iv) TapaT)=0€ " a2(%) 8 8 < f_wlz | P, — 8)— fH(zs —2)] ;ligo*(t)]dt

The proofs are immediate. Tt

LEMMA 2. If sv;#fo @) | dt

fw | fi) de< o
(o]

where Vif is the total variation of f in the range [0, o). Hence, the result

follows. This is a special case of the lemma in Tatchell [4].
then
fz o LAE) | de = ole®). LEMMA 4. Suppose that f(x) is continuous for x = (.
A (1) Suppose that 8 >0, then
e *fs(x) € BV ,[0,00) whenever e *f(x) € BV [0, co).
PrOOF. I (1) Suppose that 8 >0, then
Fla)= fm | f)| dt fﬂ e f5(t)dt € BV ,[0, =)  whenever
then f " A2)dt < vato, co).
f " et f(e)| dt = — F(0)+e*F(a) — J; e F(t)dt =o(e"). o
o
- , PROOF. Let F(x)= | e tf{t)d:.
coyt and [ |ple)]de<oo, then |
LEMMA 3. If fiz) e BV [0, o)* an ,

w(@)= f " fla—0)p(@)dt < BV.I0, ) Then

] TRl =fox) = j; ’ e"gf(t)go(x—t)dt
PROOF. w(x)= f_m fr(x—t)p*(t)di

r and
where ( 0) ‘ = z
. flw) = e | etfitydi= | Fop(x—t)ds
1(?(_“) (2 0) where
pHu)=] g (e < 0) gl =l e ¥,

) iati i in the
i i 1 variation with respect to x 1n

; “BV.[0, )" we mean “is of bounded

*From now on, by “BV40,

The result follows from lemma 3. Compare lemma 2 in Borwein [1].
range [0, =)".
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LEMMA 5. Iff | fe)) dt = o(e?),

then
f | fo®)| dt =o(e”) whenever & > 0.

PROOF. Let g(®)=1f®)!. Hence g&) = £l
By lemma 2(a) in Borwein [1], it follows that if gl(x)zo(e‘”), then gl+5(x):o(em)
and hence the result follows.

:ded into two parts. The first contains
the same type: that is “B”
ing relations

n is div
between methods of
e second contains theorems giv

3. Theorems. This sectio
theorems which give relations
methods or “B” methods. Th
between the “B” and “B'” methods.

3.1 THEOREM 1.
(i) If sa— ol
(i) If sa— ol

immediate from the definitions.

The proof is
Fach of the other theorems in this section can
We shall only state the part corres

ponding to the parts of theorem 1.
(i) in each case; the proofs of the other parts are obtained by replacing

by “Aeas(x)” and “c” by “ox” respectively.

B,a,B| then s,— ¢ B.a, 8.
B.a, 8| then s,— a(B, a, B).

be stated in parts corres-
ponding to

“Sa,ﬁ(x)”

THEOREM 2. If s, —>a|B,a, 8| then s, — ol B, a, Bl

S(x)—a=0(1) and Jm | .S, g() | dt <Coo.

it follows that,

PrROOF. We have Sq,

Hence, in view of lemma 2,

r | Sy pi(t)—o|dt

o

B j: €| S p(t) + Sa )~ | dt

= f " 418, () +o(D)] dt

0

=o(e”).
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This completes the proof of theorem 2

THEOREM 3. If 5, o[B, a, 8] then s, — (B, a, B).

P ’ 5
ROOF. We havej; €' Sy () —o| dt =0(e).

Hence, it follows that,

| Se,6(2) — 0| =€72| €28, o(x) — €% |

[ &8sty +Su a0}t —oe"

ie—ﬁ

—e %

j; ¢ {Sm,.e—l(t) —cldt—c

as |
Ep Le‘]S,,‘g_l(t)—o-fdt—}—lale“‘
=o(1).
This completes the proof of theorem 3.
T
HEOREM 4. If 5,=0() [B, a, 8] then 5,=0O(1) (B, a 2

$Ee ?rlcl)of is similar to that of theorem 3
e i i :
ollowing two results are immediate from the definitions:

THEOREM 5. If s,—a(B, a, B) tﬁen s,—alB, a, B4+1].

THEOREM 6. If 5,=0(1) (B, a, B) then 5,=0Q) [B,a, 8 +1].
Results giving relations between methods of the same type are:

THEOREM 7. If s,—a(B, a, B) then s,—a(B, a, B+8) (3> 0.

This is due to Borwein [2], result (I0).

THEOREM 8. If 5,=0(1) (B, a, B) then s,=0() (B,a, B8+8) (6 >0)

This follows f
b o0, ws from analogues of lemmas 1 and 2 in [1] with O(-) instead
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THEOREM 9. If s, — ol B, a, 8] then s, — o B, a, B+8] (8 > 0).
This follows from lemma 5.
THEOREM 10. If 5,=0(Q) (B, a, 8] then s,=0(Q) [B,a, B+8] (&> 0).

This follows from the analogue of lemma 5 with O(-) instead of o(). ‘
Finally, in this section, there are two theorems giving the exact re;latlon
between the strong and ordinary cases:

THEOREM 11. 5, — o[B, @, 81 if and only if 5,— (B, &, 8) and
f e | S, o(2) | dt = ole”).
0

PrOOF. We have that S, s-.(£)—o= () — 0+ 8, a(E).
Whence o i
(@) |Sapalt)—0|=|Sust)—a|+|Sas®)l>
(b) |Sa6@)] =< |Sualt)—o |+ | Sup-1E) —a |- _
N.ECESSITY. Suppose that s, — o[ B, &, B1. Then, it follows from theorem 3
that s, — o(B, @, 8). That is S, ot)—a=o0(1) and, further
[ e1Ssty—olde=o(e,

Thus, using (b), it follows that
| fo T 1S u(t) | d = 0le).
SUFFICIENCY. Suppose on the contrary that S, at)—oc=0(1) and that
j:ﬂ e S.s ()| dt=0(e").
Using (a), it follows at once that
J:: €'|S, p1(t)—a | dt=o0(e).

THEOREM 12. s5,=01)[B,a, 8] if and only if s,=0Q) (B,a, ) and
f ¢ | S, o(8) di = O(e?).
The proof is similar to that of theorem 11.

3. 2. Theorems in this section are stated in full.

THEOREM 13. s, —o(B,a, B8) if and only if a,—0 (B,a, B) and
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$.—> (B, a, B).

This theorem is due to Borwein [2].

THEOREM 14. s, — o |B,a, 8| if and only if a,—0 |B,a B and
s.—a| B a, B1.

PROOF. (i) NECESSITY. Suppose that s, — o|B, a, 8|. Then we have that
Ses(x)=ae s, g(x)=0 +o0(1) (14.1)
Sa.o(x)=ae s, 4(x) € BV [0, co). (14.2)
First, in view of theorem 13, and (14.1), we obtain that
s, — o(B,a, 8) and a,— 0(B, a, B).
Further, in view of (14.2) and lemma 4(i), we have that, since @ > 0,
€75y, 54a(X) € BV [0, o).
Hence

e—xaw.ﬁ(x):e_w{sn.ﬂ(x) _Sa,ﬁﬂx(x)}' € BV@[OJ OO),
and so it follows that a, —0(B,a, £|.
Also

Aes)= [ caustydt= [ e, seople—u)du,

where @(v)= f et i,

o6

Since j p(v)dv=T(a+1)<co, it follows from (14.2) and lemma 4(a) that

Aq p(x) € BV,[0, o), and further that s, »«|B, a, 8.

(i) SUFFICIENCY. Suppose that s, —o|B,a, 8| and a,— 0|B,a, 8|. Then
we have that

Ay gl = f“’ e"ta, ((t)dt =a+0(1) (14.4)
Al jo me“am, a)dt € BV [0, o0) (14.5)
Ty f(x)=ate™ a, o(x) =0(1) (14.6)
T, x)=ae *a, (x) € BV [0, o). (14.7)

First, in view of theorem 13, it follows from (14.4) and (14. 6) that

$,—a (B, a, B). Further, using the notation in the second part of the proof of
the theorem in [1], we obtain that
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esal)= | Ble—tpt)de

where (A) 8=ka >4 where % is a positive integer,
d o B 23 IBR .
(B) @)= T {e=*fs_(x)}, where f(z)= Télr—‘(ﬁn-kl) , and satisfies

[ 1o@)ide <ee,

©  Ba@= [ et lsar)=sapalds

Now, from (14.5), we obtain that
f et 54,6(t) —5a, pralt)}dE € BVw[O, o),

and further, in view of lemma 4 (i), that

J;x et {sﬂ,ﬁ(t) —So:,ﬁ-i-ﬁ(t)} dt e va[or oo):

and hence it follows that B(xz—12) is of bounded variation with respect to x in

the range £, oo) uniformly for £ = 0.
Hence, in view of lemma 3, it follows that

€254 p18(X) € BV 5[0, o0).
Also, in view of (14.7) and lenima 4 (i), we obtain that
E—E{SH’B(.'L') _Sﬂ..3+5(x)} € BVm[Oa OO)

since §=*Fka, and so,

¢ %54, () € BV 5[0, o0).

Hence s, — o |B, a, B].
This completes the proof of theorem 14.

THEOREM 15. s,— o [B,a,B8] if and only if a,— 0B, a, 8] and
s, olB; a, Bl

ProoF. (i) NECESSITY, Suppose that s, — o[ B, a, 8]. By theorem 3 it
follows that s,—o(B,a, 8), and so, by theorem 13, that s, — o(B, a, 8) and
a, — 0(B, «, 8). Further, from theorem 11, we have that
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fo ¢S o) di = ofe);

that is

[ lses®)=sens)] de=o(e,

and further, in view of lemma 5, that

[ 15epse®) S0l de=0(e),

Thus,
j; [aa,li(t) —amg_l(t) | dt
= j; | Sa,6() —Sa,6-1(8) | dt + J; R
=o(e”);
that is

[ e | T, 4(2) | dt =0(e?),

and so it follows that «, — 0[B, a, 8].
This means that

f: e | Ty p-i(2) | dt = 0(e®),

and so, since

Aa,ﬁ(t) e Ta,ﬂ(t) == Tw.ﬁ—l(t) - T;,B(t)
it follows that

j; e' | AL ()| dt =o(e®).

Thus, s, — o[B, a, 8].
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(ii) SUFFICIENCY. Suppose that s, — o[B, &, 8] and a, — 0 [B,a, 8]

By theorem 3 it follows that s,—e¢(B,a, ) and a,—0(B,a,8), and so,
by theorem 13, that s,— o(B,a, §) and further, from theorem 7, that

s, — a(B, a, B +v) whenever » = 0. Thus

Sa,8+5(Z) = Sa,p+8-1(T) = 0(€?) (15.1)
where §=ka =1, k being a positive integer.

Further, from theorem 11, we obtain that
f e'| AL o(t)| dt = f | @ o(£)| dt = 0(e?)
and
‘]: '\ Top(t) | dt = j: | @ 6(t) — A 5-1(t) | dt = 0(e%)

whence

f: | Ga,p-1(E) | dt = 0(e").
It follows from lemma 5, that

j;“‘ | S0, 8-1(E) — S, 848-1(2) | dE = 0(e”)
and

f S, a(E) — S, M(z:) | dt = o(e®).

Thus, from these two results and (15.1) it follows that

o j: [$a,8(8) —Swp-1(t) | dt = jjef |Se o) | dt =0(e”)

and so, by theorem 11, we further have that s, — 4B, a, 8.
This completes the proof of theorem 15.
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THEOREM 16. 5, —> (B, a, 8) if and only if s, — (B, a, B+1).
This theorem is due to Borwein [2].
THEOREM 17. 5, — o|B, a, Blif and only if s, — ¢|B, a, 8+1].

PROOF. (i) NECESSITY. Suppose that s, > ¢|B, a, 8]. Then we have that

Aqp(x)= j;” e ‘a, ft)dt=c+0(1) (17.1)

A ()= fo e tay i)t < BV,[0, o) 17.2)

First, from (17.1) and in view of theorem 16, it follows that

Se,pe1(X)=ae %5, 5.1(x) =0+ 0(1),
that is s, — o(B, @, B-+1).

Further, using the argument in theorem 14, we obtain that
e_IS‘x,,g+5(.I:) € BVw[O, OO)

where 8=ka and k is a positive integer. So, in view of lemma 3(@1), it follows
that

e—msa:3+8+1(x) € BVE[(); 00)_
Now, for x >0,

f e ta, ft)de
0

— ety ps(@)+ [ sy (7.3)
Also, from (17.2) and in view of lemma 4(ii), it follows that
[ e auputydt < BV, 10, o),
0

and hence, from (17.2) and (17.3) that
€ %00 5,(%) € BV,[0, o0).
Thus
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e_x{sﬂt,ﬂ+1(x) _Sa.£+a+1(x)} € BV:I:[O: OO):
and further, since a >0, in view of lemma 4(i),
e‘m{sa,ﬂ+1(x) '_‘Sa,,ﬂ+8+1(x)} € va[oa OO)

mhere, as above, 8=ka, k being a positive integer. Hence

e %5, 1) € BV,[O0, o0)

and so, we obtain that s, —a|B,a, 8 +11.

(ii) SUFFICIENCY. Suppose that s, —o|B,a, B+1].
s,—o|B,a 8+1| and a,—0|B,a,8+1], and so, from theorem 1, s5,—
o(B,a,B+1) and a, 0B, a B+1). Thus, by theorem 16, s,—o(B,a, B)

Further, we have

Then, by theorem 14,

T, pa(X) =0 "0 4o T) € BV,[0, o)
and
Az pu(x)= fle—ia,,,ﬁﬂ(t)dt € BV,[0, o).
0
From (17.3) and these results, it immediately follows that

Auil)= f oa, &)t € BV.I0, o),

and so, we have that s,—c|B,q, Bl.
This completes the proof of theorem 17.

THEOREM 18. s, —dlB,a, 81 if and only if s, — o[B,a, B+1]
PROOF. (i) NECESSITY. Suppose that s,

Further, from theorem 11, we have
[[e1alai=a [ laso)d
0 0
ZO(eE).

Thus, in view of lemma 5, we have

— o[ B, a, 8). From theorem 3,
it follows that s, — (B, &, B8) and so, from theorem 16, that s, — (B, a, 8+1).
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X
»lc: I am.ﬁﬂ(t) |dt :O(em)’

and hence

j; | @a,041(8) — @, o(t) | dt = 0(e™). (18.1)

Thus

j; J {Stx.ﬂ+1(t) _Sm,ﬁ(t)} - {Sﬂr.ﬁ+a+1(t) A‘Sw..@+n(f)} l dt :0(61):

.and further, in view of lemma 5, we obtain that

fu | {Se,541(8) =5, a(8)} = {5, g4542(8) — S, 56() } | dt = 0(€")

where 8=*ka, k being a positive integer.

Also, starting from (18.1) and argui .
? . uln, t
of theorem 15, we obtain that guing as in the second part of the proof

j; [Sa,p441(E) —Sa, p40(E) | dE = 0(e®).

Hence

o[ Lsesni®-ssilde= [ 1S, 01de

=ole”),

a.r.1d s0, in view of theorem 11, we obtain that 5, — o[ B, a, 8+1]

g? tSUFFICIENCY. Suppose that s, — o[ B, @, 8+1]. From theorem 3, it follows
at s, > a(B,a, 8+1) and so, from theorem 16, that s,—a(B, a, 8). Further

from theorem 15, we obtain that s, —o{B,a, 8+1] and a ;(,) B ,

and so we have, in view of theorem 11 o 7 ' L5 el
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| 1Tty dt =a [ Nty au eyl de=oter
0

(=]

and
[ e14cs@lde=a [ lagsi))de=oe)
It follows immediately that

[ #1501t =a [ sy de=ote)

and so, from theorem 11, that s, — o[B, a, 8].
This completes the proof of theorem 18.

It is interesting to mote that the proof of theorem 18 nowhere uses the full
strength of the hypothesis s, —o[B,a, 8]. In fact, the weaker hypothesis
s,— o(B’a, &) will do, for by theorem 14 and lemma 5(a), we can obtain that

[ 150 =5 a0 =50 0)+ S a5t =)
G

This gives rise to the interesting result:

THEOREM 19. s, —o[B,a, B8] if and only if s, —o(B,a, ) and
dy —5{) [B?a! B]-
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