A NON-ENUMERABLE EXCEPTIONAL SET

D. Borwein, University of Western Ontario

Let $\{x_n\}$ be a sequence of real positive numbers not converging to 0 and let A be the set of all real numbers a for which $\{x_n\}$ converges to 0 (mod a). The problem posed in this Journal of showing that the exceptional set A must be of measure 0 was solved by I. J. Schoenberg [1964, 332] who asked whether or not A is necessarily enumerable. In this note I show that A need not be enumerable.

Let $x_n = 2^{n-1}(n-1)!$ and, for $n = 1, 2, \dots; k = 0, \pm 1, \dots$, let I(k, n) be the closed interval

$$\left[\begin{array}{c} k - \frac{1}{4n} \\ x_n \end{array}, \begin{array}{c} k + \frac{1}{4n} \\ x_n \end{array}\right].$$

Then I(k, n) contains the three intervals I(j, n+1), j=2nk-1, 2nk, 2nk+1, all other intervals I(j, n+1) being disjoint from I(k, n). Also I(k, n) and I(2nk, n+1) have a common centre $k/x_n=2nk/x_{n+1}$.

Let

$$E_n = \bigcup_{-x_n < k < x_n} I(k, n); \qquad Y_n = E_1 \cap E_2 \cap \cdots \cap E_n.$$

There is clearly a set N_n of 3^{n-1} integers such that

$$Y_n = \bigcup_{k \in N_n} I(k, n).$$

The set $Y = \bigcap_{n=1}^{\infty} Y_n$ is closed and contains the set H of all centres of I(k, n) with $k \in N_n$. Further, each point $y \in Y$ lies in infinitely many of the intervals I(k, n) ($k \in N_n$) and consequently every neighborhood of y contains points of H. Hence Y is nonempty and perfect and so cannot be enumerable.

If $y \in Y$, $y \ne 0$, then for every integer $n \ge 1$ there is an integer $k_n \in N_n$ such that $y \in I(k_n, n)$; i.e. $|yx_n - k_n| \le 1/4n$ and so

$$x_n \to 0 \pmod{1/y}$$
.

It follows that in this case the exceptional set A is not enumerable.

In a note which appeared in this MONTHLY, (1964, p. 804), after the present article was accepted for publication, Dr. Paul Erdös demonstrated *inter alia* the non-enumerability of the above set A. The proof here given is somewhat simpler than his.

Reprinted from the American Mathematical Monthly Vol. 73, No. 3, March, 1966