## ON A CLASS OF CONVERGENT SERIES OF POSITIVE TERMS

## D. BORWEIN

Let 
$$0 < u_1 \le u_2 \le ... \le u_n$$
,  $s_n = \sum_{1}^{n} u_r$   $(n = 1, 2, ...)$ .

In a recent issue of the *American Mathematical Monthly* [1964, p. 99] Hayman and Barry posed the problem of showing that:

if 
$$u_n \leq n$$
 and  $\alpha > 1$  then  $\sum_{n=1}^{\infty} \left(\frac{u_n}{s_n}\right)^{\alpha} < \infty$ .

The object of this note is to prove the following twofold generalisation of the above result.

Theorem. If (i)  $u_n \leq nk_n$  where  $k_n \geq 1$ , (ii) xf(x) is positive and monotonic non-increasing for  $x \geq a > 0$  and

(iii) 
$$\int_{a}^{\infty} f(x) dx < \infty,$$
then 
$$\sum_{n=n}^{\infty} k_{n} f\left(\frac{k_{n} s_{n}}{u_{n}}\right) < \infty.$$
 (1)

Here and subsequently  $n_0$  denotes a suitably large positive integer. We first prove a simple lemma of independent interest.

Lemma. If  $d_n \ge 0$ ,  $D_n = \sum_{1}^{n} d_r \to \infty$  and f(x) is a positive monotonic non-increasing function for  $x \ge a$  which satisfies (iii), then

$$\sum_{n=n_0}^{\infty} d_n f(D_n) < \infty.$$

This is an immediate consequence of the inequality

$$d_n f(D_n) \leqslant \int_{D_{n-1}}^{D_n} f(x) \, dx \quad (D_{n-1} \geqslant a).$$

Proof of the theorem.

Case 1.  $\lim u_n < \infty$ . In this case  $s_n/u_n > \frac{1}{2}n$  for all large n and hence, by (ii) and the lemma with  $d_n = \frac{1}{2}$ ,

$$\textstyle\sum_{n=n_0}^{\infty}k_nf\left(\frac{k_n\,s_n}{u_n}\right)\leqslant \sum_{n=n_0}^{\infty}f\left(\frac{s_n}{u_n}\right)\leqslant \sum_{n=n_0}^{\infty}f\left(\frac{n}{2}\right)<\infty.$$

Case 2.  $\lim u_n = \infty$ . Let

$$d_1 = u_1, \quad d_n = \frac{s_n}{n} - \frac{s_{n-1}}{n-1} = \frac{nu_n - s_n}{n(n-1)} \quad (n \geqslant 2).$$

Received 25 August, 1964.

Then  $d_n \ge 0$  and  $D_n = \sum_{1}^{n} d_r = \frac{s_n}{n} \to \infty$ . Let  $N_1$  and  $N_2$  be the sets of positive integers  $n \ge n_0$  such that

$$\frac{s_n}{u_n} > \frac{n}{2}$$
 when  $n \in N_1$ ,

$$\frac{s_n}{u_n} \leqslant \frac{n}{2} \ \, \text{when} \ \, n \in N_2.$$

Then

$$\sum_{n \in N_1} k_n f\left(\frac{k_n s_n}{u_n}\right) \leqslant \sum_{n \in N_1} f\left(\frac{s_n}{u_n}\right) \leqslant \sum_{n \in N_1} f\left(\frac{n}{2}\right) < \infty.$$
 (2)

Further, for  $n \in N_2$ ,

$$d_n \, f(D_n) \geqslant \frac{u_n}{2n} f\left(\frac{s_n}{n}\right) \geqslant \tfrac{1}{2} k_n \, f\left(\frac{k_n \, s_n}{u_n}\right)$$

and so, by the lemma,

$$\sum_{n \in N_2} k_n f\left(\frac{k_n s_n}{u_n}\right) < \infty. \tag{3}$$

The required conclusion (1) follows from (2) and (3).

Remark. If the sequence  $\{k_n\}$  of the theorem is bounded then conclusion (1) can evidently be replaced by

$$\sum_{n=n_0}^{\infty} f\left(\frac{s_n}{u_n}\right) < \infty. \tag{1}$$

On the other hand, given an unbounded sequence  $\{k_n\}$  such that

$$1 \leqslant k_1 \leqslant 2k_2 \leqslant \dots \leqslant nk_n,$$

we can construct a sequence  $\{u_n\}$  satisfying the hypotheses of the theorem for which (1)' is false. Choose a strictly increasing sequence of integers  $\{n_{\nu}\}$  such that

$$n_1 = 1, \quad k_{n_{\nu+1}} \geqslant n_{\nu} k_{n_{\nu}} \quad (\nu = 1, 2, ...),$$

and put

$$u_n = n_{\nu} k_{n_{\nu}} \text{ for } n_{\nu} \leqslant n < n_{\nu+1}, \quad \nu = 1, 2, \dots$$

Then  $0 < u_1 \leqslant u_2 \leqslant \ldots \leqslant u_n \leqslant nk_n$  and, for  $m = 2, 3, \ldots$ 

$$s_{n_m} - u_{n_m} = \sum_{\nu=1}^{m-1} (n_{\nu+1} - n_{\nu}) n_{\nu} k_{n_{\nu}} \leqslant n_m k_{n_m} = u_{n_m}.$$

Hence, for  $n = n_m$ , m = 2, 3, ...,

$$\frac{s_n}{u_n} \leqslant 2$$

and so (1)' must be false.

- 0

University of Western Ontario, London, Ontario, Canada.