ON THE ABSOLUTE CESARO SUMMABILITY
OF INTEGRALS

By D. BORWEIN

[Part 1 received 30 December 1950.— Read 18 January 1951,
Part 2 received 28 March 1951.—Read 19 April 1951]

Part 1
1. WE write,* for ¢ > 1,

t
L) = fut) = P«(la—) f (t—uy-1f(w) du (x> 0),
1

Ly f(8) = folt) = f(2);
1ot |
#96,9) = o5 f (u—)Spu) du (0 <8 < 1,2 > 1),
' i
D¥(t) = ¢®(t) = lim ¢O(t,z) (0 <8 < 1), L (12)

Doh(t) = ¢O(t) = $(2),
D+s(1) = g+9(1) = (djdt)*¢()
(0 < 8 < 1, s a positive integer). |
2. The object of Part 1 of this paper is to prove the following theorem.
TuroreM 1. (@) If X = 0, and if

(i) ff(t) dt is summable |C, )|,
1

(i)  H(2) is essentially bounded in (1,00),
(iii) ¢N(E) is absolutely continuous,t
(iv) #4N@) = 0(1) in (1,00),

then T f@)p(t) dt is summable |C, ).
e :

(b) The conclusion remains valid if A is replaced by any integer greater

than A in hypotheses (iii) and (iv).

* Throughout this paper f(¢) and @(¢) denote functions integrable in the Lebesgue
sense in every finite interval in (1, ). Every integral over a finite range is a Lebes-

o0 T
gue integral, and | denotes lim f, if this limit exists, finite or infinite.
Tr—o0

T ie. t72f;,1(2) is of bounded variation in (1, o).

I Where no interval of absolute continuity is specified it is to be understood that

the property pertains to every finite interval in (1, c0).
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ponding theorems for summability (C,)) have been given by

‘and Cossar,T who dealt respectively with integral and non-integral

el and Bosanquet§ have established analogous results for series

ble |C,A|, where A is an integer. Conditions (ii) and (iv) were

d by similar conditions appearing in their papers. With reference

1sion () of the theorem, it will be proved in Part 2 that these two

itions are the best possible when condition (iii) is satisfied. We shall

 the following lemmas. Nl

MA L. If 0 <8 <1, ¢(t) is essentially bounded in (1,00) and

) - absolutely continuous, then there is an absolutely continuous function
A :

() $t) = ¢(t) p-p. in (1,00);

3 = ;
O = — g5 [ (0P 900 dut

[
€

8 -
o) | =0 [ 0wt an

309

A8

w0

, 2 -
1 and any x > t.
fotdris—7 > 1

h(t) =

@€

f (u—1)3-1¢®(u, z) du.
1

been proved elsewhere|| that (t) is independent of z, and that it is
absolutely continuous function equivalent to H(t).

', since &(f) is essentially bounded in (1,00), it follows from.
tions (1.2) that, for z > % > 1,

(3.1)

1
()

#00) = $90,2) 41 [0y @)

It (ii) is now obtained from (3.1) and (3.2).

A 2. If A= 1, $(t) is essentially bounded in (1,00) and
M (1) = 0(1)

hen, for r = 1,2,...,[A], :

ArgO=n(t) = O(1) in (1, c0). 11

* (. H. Hardy, Messenger of Math. 40 (1911), 87-91 and 108-12.
J. Cossar, Journal London Math. Soc. 16 (1941), 56-68,

M. Fekete, Math. és Termés Frt. 35 (1917), 30924,

S. Bosanquet (4).

D. Borwein (2), Lemma 7.

Cf. Bosanquet (4), Lemma 8.
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Let s = [A], 8 = A—s. Clearly [ ¢¥(¢) dt converges, and thus, as { > o0,
1

$A-1() — 1, a finite number. Hence, in view of a well-known property of
(Cesiro means, we have
A

s = lim -2l g9-0(0) — lim 62240, (3.3)

When A is an integer (s > 2,8 = 0), #(t) = $©(¢) is continuous for ¢ = 1,
and hence it follows from (3.3) and the first hypothesis on ¢(t) that I = 0.
When A is not an integer (0 < 8 < 1), we deduce from Lemma 1 (ii) that

J' w—1)3-1¢®(w) du

1, (3.3) is compatible with (3.4) only if I = 0. Hence

= O(1) in (1,00). (3.4)
Since s =
$9-0) = — [ $P) du = 0B in (1,20)

t

Repetition of the above argument, if necessary, yields the result.

LemMa 3. If 0 <8 < 1, ¢(f)
(1,00), and $+1¢0+(t) = O(1) un (1,

t) is absolutely continuous and is bounded in
o), then, for t == 1,

) _FLJ (u— P18 () du = —¢'(0)
t

(i) '
(i) F—(lljs—) f (u—t)34 () du = $(0)

i
(iv) D3’ (1)} = St £)-+ 1@ +(2).

7
[+0]

Suppose that 1 <& <. erte for 1 << u << 2z,
i qg(ﬁ) () b 3 mee
b(w) = *-5) — ) J (0—u)-3-1g(v) dv. (3.5)

2x
Since ¢@+D(u) exists and $(u) is bounded, for 1 < u < o, we have, for
1 <u < 2z,

o0

, $®+0(w)  8(3+1) _5h :
0'(u) = ®) ~ TEII(I—9) f (v—u)-3-2¢(v) dv. (3.6)

2z

Clearly 8'(u) exists and is bounded in (1, )

i u®|¢P(w) | ||
Let M= bﬂ‘;‘jd{‘T(S)_"'r(a)r(lra)}' (3.7)

In view of Lemma 2, M is finite.
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It follows from (3.5) and (3.7) that, for 1 << u < 2,
10(w)] < M{w-3+(2w—u)-3}. (3.8)

In virtue now of Lemma 1 (ii) and (3.5), we have

2z
$(t) = — [ (u—0P19(w) du.
¢

Hence
2x

s+ [ (u—t)ﬁ-le(u) du+(@—1P0()/8

&

J —ia lduujﬂ dw;J‘duJ‘ W—1u )8 19/ (w) dw.  (3.9)

u

Since'ﬁ'(w) 1s_boundejd in (1,2), and, by (3.8), 6(u) is integrable in (z, 2x),
we obtain, on differentiating (3.9) with respect to ¢ and then applying (3.6),

$'()+(1—3) [ (u—1)>-26(u) du—(w—1)*-16(z)

b

= f (w_t)3—16f(w) duw

t

l T
S ) f (w—)>~1g®+(w0) du+-

@

8 1) "
+ f (w—1)3-1 dw f (v—w)—5-2¢(v) dv.

¢
Further, by (3.7) and (3.8),

(3.10)

2x .
(1—9) f (w—1)2-2(0(u)| du-t(x—1)%-|6(x)|+-

36+ [
TIEI—) ! G f (v—w)=-2((v)| dv

2x

< 2M(1—8)(x—1t)3-2 f (22— )= du—+2 M (x— )35

+M8(5-+1) f (w—1)3-1 duw _T (v—x)-5-2 dp
2z

= 2M (&E t)a 21— 3+2M(

= o0(1) as x - 0.

)8 Lyp— 5+M( )x_s_l

(3.11)
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(3.10) and (3.11); and conclusion (ii) is an
also deduce

312

Conclusion (i) follows from
immediate consequence of (i) and the final hypothesis. We can

(iii) from (i) as follows:

1 s
mj(u £)-2) () du

o o

g L L BB
:m!(u ) dui(v wp-148+0(v) dv

_:_L— B+ s R sy
_F(lma)r(a)tf # D(”)d’”tf(“ t)-S(v—u)-t du

L .[ $84D(p) dv = ()3

order of integration and the final equahty being

the inversion of the
o) and, by Lemma 2, $®(v) = 0 (1)

justified since ¢@+9(v) = O(v -5-1)in (1,
a8 v —> 0.
To complete the proof of the lemma we observe that
&x
f (u—t)~ue'(u du—-tj wu— 1)~
i
J u—1)'='(u (1— B)J(%*t”aduj¢

t
T

—1) [ (u—t)P(w) du-t-(a—1' (@)

o~

Hence, by result (iii),

At e
cth(u 1) Oud(u) du
* o

t [ ety @) au) +

d
= a{l"(lh—S)tqb(B)(t)

8]

+(3 jt (u—1)~2(u) du+(8—1)( x—1)~Bep(w)

t
T

_ T(1—8){t(0) + 400} +(6—1) = j (uw—1) S (ux) du+
i

:iit{t.r (w—t) 0" (u du}. (3.12)

(1,00), d(x)@—1)°= o(1) as x-»o0; and, since

+(B—1)(@—1)7¢()

Since ¢(x) = O(1) n
ug'(u) = O(1) in (1,00),
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d K; ! T ! 7 !
%lt mj (w—1£) 0" (m) du} = i (w—1)~3' (u) du—+8t f (w—1t)-3-1¢" (u) du
- 0{ [ (u—a) Pt dutta? [ tw—y-51 du}
€T x
= Ofx-d+ta(xz—1)%}
=o0(1l) as & — 0.
Consequently conclusion (iv) follows from (3.12) and the definitions (1.2).
LeMMA 4. If s is a positive integer, $(t) is absolutely continuous, and ¢(t)
and 5¢9(f) are bounded in (1,00), then, for s—1 <X <s, 8 = A—s+1,
t =1,
; : —1)-34® e
0 o | 0070w b = 420,
i
(ii) ¢N(t) is absolutely continuous,
(i) M) = O(1).
Suppose that x > ¢ =

) du — _% f (u—t)-3 du j #'(v) do+ () (z—1)

. Since ¢'(¢) is absolutely continuous, we have

dt d
t ¢
= [ (0—1)3¢'(2) dv-+-(a)@—1)>.
i
O(1) in (1,00) and, by Lemma 2, ¢'(v) = O(v™!) in

Hence, since ¢(x) =
(1,00), we obtain =

80 = i | -0 @) de, (3.13)
t

which is conclusion (1) for the case s = 1.
Suppose now that s 2> 2. Then, by Lemma 2,

¢'(w)=o0(1), ¢'(v) =007
as v — oo; and thus it follows from (3.13) that
['(1—8)dG+1(¢ E% (v—1t)=% dv J ¢"(w

H
&| =
e e

d@J' w—v) 3w
v

= J' (w—18)=3¢" (w) dw
t

This proves result (i) for the case s = 2, and repetition of the argument

yields the result when s > 2.
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Since ¢¥(v) 18 absolutely continuous and v*¢@(v) = O(1) In (1,c0), con-
clusions (i) and (iii) follow directly from (i).

4. Levda 5. Fory>w>'u>0,0<8<1,

jf)(y’f‘ﬁ)sf2 dt < (1‘3)_%(@0‘ﬂ)(y‘w)wd(y—’”)*a_l.
: f the following

The result is obtained on taking the root of the product o

two inequalities:
w

[yt < o | =0 di = G0

P e - .
st = (1=t fy—o—tg—wl( 125 Ju—w o

y—w)"Hy—v)P;

ﬁt—ig

_1.

< (1=8)Hw—0)y—w) ' (y—?)
Lemyma 6. Fory >u>10 <& <1,

l j (y—t)p2 dt j (u—v)P-If(v) do

1

U

< (1—8)-TE+ 1~ [ =P A b
1

1t has been shown by M. Riesz* that, for w >1 > 1,
1] t w ] o
r(1—3) j (u—v)P-Yf(v) dv = 3 j fs(v) dv j (u—w)p-H(w—v)3 dw.

1 1. 3

In view of this and Lemma 5 we have

{1 t
I‘(l—S)\ J. (y—t)®2 dt I (u—v)?-Yf(v) dv

]

(y—t)°-" dt f | f5(v)| dv f (u—w)-1(w—0v)=>"t dw

<8
i

=8

"“—-.g"“—-——ag

o)l do | (ump-io—v) St dw [ y—tP=tde

< 303yt | (=l o | (u—w)pH{w—v) dy—w) dw
1 v

< 58y Hy—u-t | =) o [ e

1

v

The result follows.
* M. Riesz, Acta Univ. Hungaricae Szeged, 1 (1923), 114-26. See also 8. Ver-
blunsky, Proc. TLondon Math. Soc. (2) 32 (1931), 163-99.
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5. Lemma 7. For A > 0, f f@) dt is summable |C,A| if and only if
1

o0

[ by dy < co.

1

We have, for y > 1,
d A Y :
@{y lf (y—w)f(w) du}

= My | (y—up () du—dy - [ (y—u)f () du
1 1

Uy
= 2y [ (y—wLuf(u) du.
1
The result follows.

LEMMA 8. Ifff(t) dt s summable |C,A|, where A = 0, then
1

if(t) = o(1)|C,A+1| as t - c0.*
This follows from the identity
¢ ¢ ¢
{1 j (t—uyuf (u) du = = f (t—uPf (w) du—t-2-1 f (t—u)M1f () duc.
i 1

1

Lemma 9. If f £(t) dt is summable |C, A, where A = 1, then
1

f 2L {tf(t)} dt is summable |C,A—1|.
1

This is a simple special case of a result established elsewhere.f

6. Proof of Theorem 1
Version (a). We write, for ¢ > 1,
g(t) = ().
Case 1. Suppose that 0 < A < 1. In view of Lemma 7 we may replace
hypothesis (i) by -
[y )] dy < oo; (6.1)
1

* fie. 1L, {tf(#)} is of bounded variation in (1, c0) and is o(1) as £ — co.
+ D. Borwein (1), Theorem 1.
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and the required conclusion by

o0 ¥

[y ay| [ w—v-sgomin o < (62)
Write : .
c;S(A)(u) A H L
Plwy) = ~Ftt o f (r—u) M) do (1< u < 2y),
B (6.3)
Quy) = [ (u—tPYy—1)g(t) dt
1
— TO)(y—u) g, (u j (y—t)\-2 dt j (w—vY-1g(v) dv
1<u<g)y (64
i ) D) I
M = D)+ 1) pmax( 00 B @9)

where max denotes the essential upper bound. In view of hypotheses (ii)
and (iv), M is finite.
Then, for 1 << u < 2y,

|P(u, )| < M{u+(2y—u), (6.6)
and, by Lemma 6, for 1 < v <y, :
QG 9)] < Mly—wP-2gyw) [+ My—wP [ (y—o)*gy(w)| do. (6.7)
For y such that 3
v
| g—uP g du < o0 (y > 1), - (6.8)

1
we have, in virtue of Lemma 1, (6.3) and (6.6),

r A-1
g(0)(t) d
lf 1) t

2y

(y—1Yg() dt [ (w—0)*2P(u,y) du

t

|
H—

HL_1L_2

P(u,y) du [ (y—t) N (u—t)Yg(t) di+

2y

—+—J (uyduJ-

v

L (u—ty-1g(2) di

fPuy (u, y) du-}—J-Pqu(y, u) du;  (6.9)
i

!
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where, by (6.6) and (6.7),

quyQ(u )

uh duf (y— 0 Hgn )+ (= [ —vp-tigo) o)

3l

wAy—u)ga(w) | du+

¢ Uy
+2M? j (y—v)A-1|g3(v) | dv f o My—w)Pt du
3 v

: Y
— 23r2(1+20) [ w Ny —upgaw)| du, (6.10)
1l
and
2y
[ Peu.y)Qly,w) du
v
2y ¥
< 2308 [ 2y duf =) Uaa) -+ ()2 [ (=02 on )l o}
i

W
2y
— 2M2|gy(y)]| [ y—w)Hu—yP dut
Y

2y

+2M° f (y—’f’)“"”g,\(?))} dv J. (Qy—u)m?‘(ﬁ_y)éh—l du
2 7

Yy
— 2M2B(, 1—A)|ga(y) |+ 2M°B@EA, I#A)y‘*"f (y—v)*-L{g(v)| do. (6.11)

Let N = 2M2{1+2214-B(}, 1— A+B(3A, 1— A)}
Tt is familiar that (6.8) holds for almost all y in (
from (6.9), (6.10), and (6.11) that
Y

j (y—tPg()(0) dt

1,0), and so it follows

f ytdy

< N [ u gy du [ y—up=9 dy N [ 97 10a@) dy+
1 u 1
+N [ @) do [ yP2y—o)t dy
1 v

— N 1BEAAHD} [ 57w dy-

The result, (6.2), now follows from (6.1).
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Since the theorem is trivially true when A = 0, only the following case

remains to be considered.
Case 2.% Suppose that A = 1, and assume the theorem with X replaced by

A—1. In virtue of Lemma 1 (i), we may further suppose, without loss in
generality, that ¢(f) is absolutely continuous. Then, for ¢ > 1,

t t
[ faog() du = [ uigu)d(u) du

¢
= 1,00+ [ un(w)pw)—ug' (W)} du.  (6.12)
il
By Lemma 9, a consequence of hypothesis (i) is that
f w29, (u) du is summable |C,A—1]. (6.13)
i:

Let s = [A], 8 = A—s. Then, by Lemma 2,
ti+rdG+n() = O(1) in (1,00) (r = 0,1,...,8).
Hence, by conclusions (ii) and (iv) of Lemma 3,
i¢'(t) = O(1) in (1, 00),
and, for ¢t = 1, :
P-LDALGd! (1)} = A -1(d[dt)* (8D (1) -3+ D (1)}
- (/\—1)tA—1¢(A—1’(t)—I—t“qﬂw(t).

Clearly then both $() and #¢'(¢) satisfy the hypotheses of ¢(¢) with A
replaced by A—1: and so, in view of (6.13) and our assumption,

fu*zgl(u)zﬁ(u) du is summable |O,A—1], (6.14)
1

and j w2 (u){b(u) —ud'(u)} du is summable |C,A—1]. (6.15)
i

It follows from (6.14), by Lemma 8, that
t1g, () (t) = o (1)|C,A| as t — co. (6.16)
In view now of (6.12), (6.15), and (6.16),

j?f(u)q&(u) du is summable |C,A],

and Case 2 is thus proved by induction. This completes the proof of
version (a) of the theorem.
; * Cf. Bosanquet (4), 43.
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Version (b) now follows from Lemmas 2 and 4. Though weaker than
version (a), version (b) has been included since it involves only derivatives
of integral order.

Part 2

7. In order to show that conditions (ii) and (iv) of Theorem 1 () cannot
be relaxed we shall prove the following result.

TureorEM 2. If A = 0, and if

(i)  ¢N(¢) is absolutely continuous,

(i) fm f@)p(t) dt is bounded (C)* whenever fw f(t) dt is summable |C, ]|,
then, fo; t = 1, ¢(1) ts essentially bounded and t?‘lgﬁ(")(t} — ),

We shall suppose, in what follows, that all functions discussed are real.T

The following additional lemmas are required.

8. Lemma 10. If ff(t)gé(t) dt is bounded (O) whenever Jeoif(t)! dt << o0,
then ¢(t) is essentiallylbounded an (1, 00). ;

This can be established by a proof given elsewhere? for a slightly weaker
form of the result.

Lemma 11, If $(t) 48 continuous and unbounded in (1, c0), then, correspond-
img to any non-negative integer s, there is a function f(t) such that fE(t) is

absolutely continuous, f(1) = f'(1) = ... — Ly —0
[17@)1dt <o, and [ fioypt) dt — co.
i i

This has been established elsewhere.§

Lemma 12, If $(t) is essentially bounded in (L,00), and, for 0 < & < 1,
¢O(t) is absolutely continuous, then, for x > 1,

€T €T 8 € 0 o
lf FOp) &t = — f 0890 dtt s [ 150 [ (uty S 90

*de. 4L L {f(E)()} = O(1) in (1, o), for some non-negative u.

T There is clearly no loss in generality if the theorem is proved for real functions
J(t) and (z).

I Borwein (2), Lemma 2.

§ Ibid. Lemma 1, Case 2.
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In view of Lemma 1, we have

f FOb(t) dt = —%3) f f(t) dt f (1 1)8-1$®() duu+-
71 1 i

+m f F(t) de f (u—tpP=1 du f (0—u)-3-3(v) dv
1 t z

U

= "Fzs—) J $O(u) du f (u—tp-Lf(t) dt-+

8 x u % o0 s
+m!duj (ukt)ﬁ £(t) dtaj (v—u) 3 1d(v) dv

the inversions being justified by the absolute convergence of the integrals
concerned. The result follows.

Lemma 13. Iff(t) = o (1)|C,A| as ¢ — o0, where A = 0, then, for p > —1,
t2f(t) = o (t?)|C, A| as t — oo.

This is a special case of a result established elsewhere.*

Lemma 14, If X > 0 and f t=A| fi(t)| dt << oo, then, for u > 0 and
1

AZ=v >0,

j t—*—“lf,\w(t)l dt < oo,

(ii) ft" Afh t) dt is summable |C,v|.

Result (i) is a consequence of the following inequality:t

o 5 -
1
Jt-""f‘lfam(t)ldtgmi[t f‘-#cltlf w)=t fi(u)| du

~ 5 j )| du f ()1 dl

SRR
PR f wNfiw)| du

Result (ii) is a special case of a theorem given elsewhere.}

* Borwein (1), Lemma 4.
7 Cf. L. S. Bosanquet (3).
1 Borwein (1), Theorem 2.
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9. Lemma 15. If A—1 is positive and non-integral, and if

[ A0 dt < o,

1

(ii)  (t) is essentially bounded in (1,00),
(iil) $*A-N(t) is absolutely continuous and

P-14A-1(1) = O(1) in (1,00),
then, for 8 = A—[A], s = [A]-+-1,
- ffa(t) dtj (u—1)-5-1(u) du = O(1) (O, ) in (1,00).%

If 0 < A < 1, the result follows from hypotheses (i) and (i) alone.
Suppose that Yy zx>1 r=>0. Denote the finite essential upper
bound of |4()| in (1,00) by M, and write

€T

B, ) = ﬁ f (e—t)fs(t) dt f (u—t)3-1(u) du
1 x

&

k@,r) = [ @ty 1/5(0)] dt [ (u—0)2$(u)| du.
Then A(z, 0) = A(x), and

k(z,r) < 3-1M f (1) f5(0)

€T

MFT+1
S f s—ty|f(t)] di.

1
Y

Hence k(y,r) < oo and f (,7) da < o0; (9.1)
i

w) du | ()Lt fy(t) dt

E fydw f $(u) du f (—)=3-3(w— ) fy(t) dt-+

L fydx fq:,(u) duf R () )

* je. hy(x) = 0@ in (1, o).
5388.3.1 Y
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= [ $(w) du f da f (w—1)-3-1(z—1)fy(#) di--
1 1

+ qu(u) dufdxf (w—1) -1 (x—1t)fs(¢) dt

i

= 1 | @ [ - at

T+1f¢u) duf(u—t )1 (y—t)r+1f (1) .t

it F(va—i—_l—ll—w_ﬁ ffm(u)?-"(u) du+T(r+1)h(y, r4-1).
il
Consequently
w—}—l
= Bz, 8)+ Z crnr @) (2]

Further it follows from hypothesis (i), by Lemma, 14 (i), that
[ telf0dt < oo,
1
and so, in view of hypothesis (ii),

[ 1500 dt < co. (9:3)

When s > 2 and r = 0, Y I
and Lemma 14 (ii), that

§—2, we have, in virtue of hypothesis (i)

f =1 4(t) di is summable |0, A—r—1 I3

and thus, since we can deduce from hypotheses (ii) and (iii) and Lemma 2
that ¢(¢) satisfies conditions (1), (iii) and (iv) of Theorem 1 (a), with A
replaced by A—r—1,

f 73, a(D$(0) i is summable [C,A—r—1]. (94

It follows now from (9.3) and (9. 4), by Lemma 8, that, for
o i=000000 (8 21),
15 fr+1 LE)(}S

)=o0 1)]() §—r| as & — oo;
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and thus, by Lemma 13,

fr1(@)p(z) = o(a") |C,s—r| as z — co.
Hence zr%iﬂ— I {f,a@)(@)} = 0@ in (1, c0).

We prove next that
h(x,8) = O(z*) in (1, c0).
In view of the first inequality in (9.1), we have

sl h(x,s) =

B(u) du | (w—1t)-3-1(x—1)sfs(t)
f f J
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= (—1p- f $(u) du j A0 (@atyHu—t) 32 z—1)} dt

s—1
= 3¢X,
r=0

where ¢, cy,..., ¢,_;, are constants and

f(ﬁ(ﬂ) du f (uﬁt)‘s‘lfr(ﬂf-—t)”lf{\(i) di

< M [ du | —tysrrie—ty ot 0 e
1

&

- [ @250 a
< M4 [ (13123 () de

< 81 My J 2 fy(0)| di.
1

Thus, in virtue of hypothesis (i), (9.6) follows from (9.7).
The result is now a consequence of (9.2), (9.5), and (9.6).%

10. Proof of Theorem 2
We deduce from hypothesis (i) and Lemma 10 that
$(¢) is essentially bounded in (1, o).
We have thus only to prove that
N(E) = O(1) in (1, c0).

* Clearly only hypotheses (i) and (ii) are used when 0 < \ < 1.

(9.7)

(10.1)

(10.2)
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Case 1. Suppose that 0 < A < 1, and assume that
t*¢N(t) is unbounded in (1,c0). (10.3)

It follows from the assumption, by Lemma 11, with ¢(f) replaced by
1\$N(t), that there is an absolutely continuous function g(¢)* such that

g(l) = O: ©
ft “Mg(#)] dt < o0 (10.4)
1

and j g(t)¢N(t) dt = co. (10.5)
1

Now define, for almost all ¢ = 1,

f@) = L_5g'(D).
Clearly then, for¢ = 1, Hlt) = g(t). (10.6)
It follows from (10.4) and (10.6), by Lemma 14 (ii), that

j f(@) dt is summable |C,Al;
1

and thus, by hypothesis (ii),

j F(t)(2) dt is bounded (C). (10.7)

1
On the other hand, in virtue of (10.6) and Lemma 12, we have, forz > 1,

@
[ rwsw i
3
S J' O dt -4 1 y ff,\ dtf(u—t) M) du. (10.8)
Now it follows from (10.1), (10.4) and (10.6), by Lemma 15, that the
repeated integral in (10.8) is O(1) (C, 1) in (1,00). We thus deduce from
(10.5) and (10.8) that, in contradiction to (10.7),

f f()¢(t) dt is not bounded (C).

Therefore the assumption is false, and so for this case (10.2) holds.

Case 2. Suppose that X > 1 and X # 2,3,.... Let
8§ =A—[A] and s=[A]41.

* $Ag(¢) is the function f(¢) of Lemma 11.
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Since ¢(t) satisfies the hypotheses of the theorem, with A replaced by 3,
it follows from Case 1 that

$3¢®() = O(1) in (1, 0). (10.9)

Assume now that
P-144-1(t) = O(1) i (1, 0) (10.10)

and A1) (10.11)
Agin Casge 1, it follows from (10.11), by Lemma 11, that there is a function

s unbounded in (1,c0).

git) muchthat g~1(t) is absolutely continuous, (10.12)
FOLT=— (Y S =g SR ), (10.13)
jt"‘|g(t)| dt < oo (10.14)
1
and f g(t)d(t) = (10.15)
1

Now define, for almost all £ == 1,:
J) = Iy g*A0).
Then, in view of (10.12) and (10.13), we have, for t > 1
7O = g(0). (10.16)
It follows, from (10.14) and (10.16), by Lemma 14 (ii), that

f f(¢) dt is summable |C,Al;
1
and thus, by hypothesis (ii),

j f()¢(¢) dt is bounded (C). (10.17)

On the other hand, by Lemma 12, we have, for 2 > 1,
x 8 x @ e
[ s de— s | 0t [ w3900 au
1 1 b

x

= — [ /5()4%0) dt

il

= Ell(— 1Y fs 1o (@) B+ D) (— 1) Jf)‘(t)qﬁ(‘\)(t) dt (10.18)
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Now it follows from (10.14) and (10.16), by Lemma 14 (ii), that, for
r=1,2,.,5—1, '

f t-9-rfs.(t) dt is summable |C,s—r—1|.
i

Also, for such r, we can deduce from hypothesis (i), (10.1), (10.10) and
Lemina 2 that 3+r-14G+-1(¢) satisfies the hypotheses of ¢(t) in Theorem
1 (), with A replaced by s—r—1; and thus

f t-3f5, (1) . 1347~ 14@8+r-1(¢) df is summable |C,s—r—1|.
1

Hence, by Lemma 8, for v = 1,2,...,s—1,
F5.r (@) D(@) = 0(1) |C,s—7| as & > c0. (10.19)
Further, in view of hypothesis (i), (10.1), (10.10), (10.14), (10.16) and
Lemma 15, the repeated integral in (10.18) is O(1) (C,s) in (1,00). Thus it
follows from (10.15), (10.16), (10.18) and (10.19) that, in contradiction to
(10.17), i
ff(t)q&(t) dt is not bounded (C').
1

Therefore the assumption is false; and thus, since ¢(¢) satisfies the hypo-
theses of the theorem with A replaced by 8-+r (r = 1,2,...,5—1),

if $B+r-14@+-1(1) = O(1) in (1,0),
then Prgdn(z) = 0(1) in (1,00) (r = 1,2,...,8—1).
Consequently (10.2) follows from (10.9).

Case 3. Suppose finally that X is a non-negative integer. When A = 0,
(10.2) follows immediately from (10.1); and when A > 1 we may argue as
in Case 2, putting 8 = 0, s = A1, and omitting the repeated integral
from (10.18). ;

This completes the proof of Theorem 2.

In conclusion, I should like to express my thanks to Dr. L. 5. Bosanquet
for advice and helpful eriticism. '
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