LINEAR FUNCTIONALS CONNECTED WITH STRONG CESÀRO SUMMABILITY

D. BORWEIN

1. Introduction

The object of this note is to characterise all linear functionals on the normed linear spaces w_p and W_p defined below. By a linear functional we mean one that is real-valued, additive, homogeneous [1; p. 27] and continuous. It is to be supposed throughout that $\infty > p \ge 1$ and that 1/p + 1/q = 1.

Definitions. 1. w_p is the space of real sequences $x = \{x_n\}$ for which there is a number $l = l_x$ such that

$$\sum_{n=1}^{N} |x_n - l|^p = o(N),$$

with norm

$$||x|| = \sup_{N \ge 1} \left(\frac{1}{N} \sum_{n=1}^{N} |x_n|^p \right)^{1/p}.$$

2. W_p is the space of real valued functions x, measurable (in the Lebesgue sense) in the interval $(1,\infty)$, for which there is a number $l=l_x$ such that

$$\int_{1}^{T} |x(t) - l|^{p} dt = o(T),$$

with norm

$$||x|| = \sup_{T \ge 1} \left(\frac{1}{T} \int_1^T |x(t)|^p dt \right)^{1/p}.$$

3. Given any real sequence $\alpha = \{\alpha_n\}$ we define a sequence $\{m_n(\alpha, p)\}$ by:

$$m_n(\alpha, p) = \begin{cases} \sup_{2^n \leqslant \nu < 2^{n+1}} \left| \nu \alpha_{\nu} \right| & \text{if} \quad p = 1, \\ \left(\frac{1}{2^n} \sum_{\nu = 2^n}^{2^{n+1} - 1} \left| \nu \alpha_{\nu} \right|^q \right)^{1/q} & \text{if} \quad p > 1. \end{cases}$$

4. Given any real valued function α measurable in $(1, \infty)$ we define a sequence $\{M_n(\alpha, p)\}$ by:

$$M_n(\alpha, p) = \begin{cases} \text{ess.sup} |t\alpha(t)| & \text{if} \quad p = 1, \\ \frac{2^{n} < t < 2^{n+1}}{2^n} |t\alpha(t)|^q dt \end{pmatrix}^{1/q} & \text{if} \quad p > 1. \end{cases}$$

Received 13 July, 1964.

[JOURNAL LONDON MATH. Soc., 40 (1965), 628-634]

LINEAR FUNCTIONALS CONNECTED WITH STRONG CESÀRO SUMMABILITY 629

The spaces w_p and W_p are intimately linked with the strong Cesàro summability method $[C, 1]_p$. In fact, a sequence $x = \{x_n\} \in w_p$ and $l = l_x$ if and only if $x_n \to l[C, 1]_p$; and any function in W_p can be similarly characterised.

We prove two theorems.

Theorem 1. (i) If f is a linear functional on w_p , then there is a real number a and a real sequence sequence $\alpha = \{\alpha_n\}$ such that

$$f(x) = al_x + \sum_{n=1}^{\infty} \alpha_n x_n \tag{1}$$

for every $x = \{x_n\} \in w_p$ and

$$\sum_{n=0}^{\infty} m_n(\alpha, p) < \infty. \tag{2}$$

(ii) If a is a real number and $\alpha = \{\alpha_n\}$ is a real sequence satisfying (2), then (1) defines a linear functional f on w_n with

$$||f|| \le |a| + 2^{1/p} \sum_{n=0}^{\infty} m_n(\alpha, p),$$

and the series in (1) is absolutely convergent for every $x = \{x_n\} \in w_p$.

THEOREM 2. (i) If f is a linear functional on W_p , then there is a real number a and a real-valued function α , measurable in $(1, \infty)$, such that

$$f(x) = al_x + \int_1^\infty \alpha(t) \ x(t) \ dt \tag{3}$$

for every $x \in W_p$ and

$$\sum_{n=0}^{\infty} M_n(\alpha, p) < \infty. \tag{4}$$

(ii) If a is a real number and α is a real valued function, measurable in $(1, \infty)$, satisfying (4), then (3) defines a linear functional f on W_p with

$$||f|| \le |a| + 2^{1/p} \sum_{n=0}^{\infty} M_n(\alpha, p),$$

and the integral in (3) is absolutely convergent for every $x \in W_n$.

Theorem 2 will be proved first. I am indebted to the referee for pointing out that the first part of Theorem 1 can be deduced from Theorem 2.

2. Proof of Theorem 2

Part (i). Let L_p be the linear space of real-valued functions x measurable in $(1, \infty)$ for which

$$\int_{1}^{\infty} |x(t)|^{p} dt < \infty,$$

with norm

$$||x||_{L_p} = \left(\int_1^\infty |x(t)|^p dt\right)^{1/p}.$$

Clearly, if $x \in L_p$, then $x \in W_p$, $l_x = 0$ and

$$||x|| = ||x||_{W_p} \le ||x||_{L_p}.$$

Consequently the restriction to L_p of the given linear functional f on W_p is linear on L_p . It follows from standard results [1; pp. 64–65] that there is a real-valued function α , measurable in $(1, \infty)$, such that

$$f(x) = \int_{1}^{\infty} \alpha(t) \ x(t) \ dt \tag{5}$$

for all $x \in L_p$ and either

$$\operatorname{ess.sup}_{1 < t < \infty} |\alpha(t)| < \infty \text{ if } p = 1,$$

or

$$\int_{1}^{\infty} |\alpha(t)|^{q} dt < \infty \quad \text{if} \quad p > 1.$$

To show that α must necessarily satisfy (4) we consider the cases p=1 and p>1 separately.

Case a. p=1. Let $M_n=M_n(\alpha,1)$. There is a measurable set e_n of positive measure $|e_n|$ in the interval $(2^n, 2^{n+1})$ such that

$$|t\alpha(t)| > M_n - \frac{1}{2^n}$$

for all $t \in e_n$. Let

$$x(t) = \begin{cases} \frac{2^n}{|e_n|} \text{sign } \alpha(t) & \text{if} \quad t \in e_n, \, n \leq r, \\ 0 & \text{otherwise.} \end{cases}$$

Then $x \in L_1$ and so, by (5),

$$||f|||x|| \ge f(x) = \int_{1}^{\infty} x(t) \ \alpha(t) \ dt = \sum_{n=0}^{r} \int_{e_{n}} \frac{2^{n}}{|e_{n}|} |\alpha(t)| dt$$

$$\ge \frac{1}{2} \sum_{n=0}^{r} \frac{1}{|e_{n}|} \int_{e_{n}} |t \ \alpha(t)| dt \ge \frac{1}{2} \sum_{n=0}^{r} \left(M_{n} - \frac{1}{2^{n}} \right). \tag{6}$$

Further, for $2^s \leqslant T < 2^{s+1} \leqslant 2^{r+1}$,

$$\frac{1}{T} \int_{1}^{T} |x(t)| dt \leqslant \frac{1}{2^{s}} \int_{1}^{2^{t+1}} |x(t)| dt = \frac{1}{2^{s}} \sum_{n=0}^{s} \int_{e_{n}} |x(t)| dt \leqslant \frac{1}{2^{s}} \sum_{n=0}^{s} 2^{n} < 2,$$

and, for $T > 2^{r+1}$

$$\frac{1}{T} \int_{1}^{T} |x(t)| dt \leqslant \frac{1}{2^{r+1}} \int_{1}^{2^{r+1}} |x(t)| dt < 1.$$

Hence ||x|| < 2 and so, by (6),

$$2||f|| + \frac{1}{2}\sum_{n=0}^{\infty} \frac{1}{2^n} = 2||f|| + 1 \ge \frac{1}{2}\sum_{n=0}^{\infty} M_n,$$

Linear functionals connected with strong Cesàro summability 631 which establishes (4) in this case.

Case (b). p > 1. Let $M_n = M_n(\alpha, p)$ and let

$$x(t) = \begin{cases} \frac{t^q}{2^n} \left| \frac{\alpha(t)}{M_n} \right|^{q/p} & \text{sign } \alpha(t) \text{ if } 2^n \leqslant t < 2^{n+1} \leqslant 2^{r+1} \text{ and } M_n \neq 0, \\ 0 \text{ otherwise.} \end{cases}$$

Then $x \in L_p$ and so, by (5),

$$f(x) = \int_{1}^{2^{r+1}} |\alpha(t)| x(t) dt = \sum_{n=0}^{r} \int_{2^{n}}^{2^{n+1}} |\alpha(t)| x(t) dt$$
$$= \sum_{n=0}^{r} M_{n} \leq ||f|| ||x||.$$
(7)

Further, for $2^s \leqslant T < 2^{s+1} \leqslant 2^{r+1}$.

$$\frac{1}{T} \int_{1}^{T} |x(t)|^{p} dt \leq \frac{1}{2^{s}} \int_{1}^{2^{s+1}} |x(t)|^{p} dt = \frac{1}{2^{s}} \sum_{n=0}^{s} \int_{2^{n}}^{2^{n+1}} |x(t)|^{p} dt$$

$$\leq 2^{p-s} \sum_{n=0}^{s} 2^{n} < 2^{p+1},$$

and, for $T \ge 2^{r+1}$,

$$\frac{1}{T} \int_{1}^{T} |x(t)|^{p} dt \leq \frac{1}{2^{r+1}} \int_{1}^{2^{r+1}} |x(t)|^{p} dt < 2^{p}.$$

Hence $||x|| < 2^{1+1/p}$, and so, by (7),

$$\sum_{n=0}^{\infty} M_n \leqslant 2^{1+1/p} \|f\|,$$

which established (4) in Case (b).

Suppose now that $p \ge 1$, $M_n = M_n(\alpha, p)$ and $x \in W_p$. Then, by Hölders inequality,

$$\int_{1}^{\infty} |\alpha(t) x(t)| dt = \sum_{n=0}^{\infty} \int_{2^{n}}^{2^{n+1}} |\alpha(t) x(t)| dt$$

$$\leq \sum_{n=0}^{\infty} M_{n} \left(2^{p(1-1/p)n} \int_{2^{n}}^{2^{n+1}} \left| \frac{x(t)}{t} \right|^{p} dt \right)^{1/p}$$

$$\leq \sum_{n=0}^{\infty} M_{n} \left(2^{-n} \int_{2^{n}}^{2^{n+1}} |x(t)|^{p} dt \right)^{1/p}$$

$$\leq 2^{1/p} ||x|| \sum_{n=0}^{\infty} M_{n}. \tag{8}$$

It follows that $\int_{1}^{\infty} |\alpha(t)| \, x(t) \, dt < \infty$ whenever $x \in W_p$, and in particular,

since the characteristic function of $(1, \infty)$ is in W_p , that

$$\int_1^\infty |\alpha(t)| dt < \infty.$$

Suppose next that $x \in W_p$ and $l = l_x$. Let

$$y(t) = x(t) - l,$$

$$y_n(t) = \begin{cases} y(t) & \text{for } 1 \le t \le n, \\ 0 & \text{for } t > n. \end{cases}$$

Then $y \in W_p$, $y_n \in L_p$ and

$$||y_n - y|| = \sup_{T \ge n} \left(\frac{1}{T} \int_n^T |x(t) - l|^p\right)^{1/p} = o(1) \text{ as } n \to \infty.$$

But

$$|f(y_n - y)| = |f(y_n) - f(y)| \le ||y_n - y|| ||f||,$$

and so, by (5),

$$f(y) = \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} \int_1^n y(t) \alpha(t) dt = \int_1^\infty x(t) \alpha(t) dt - l \int_1^\infty \alpha(t) dt,$$

since both integrals on the right-hand side have been shown to be absolutely convergent. Taking δ to be characteristic function of $(1, \infty)$, we see that

$$f(x) = f(y+l\delta) = f(y) + lf(\delta) = \int_{1}^{\infty} x(t) \alpha(t) dt + al,$$

where

$$a = f(\delta) - \int_{1}^{\infty} \alpha(t) dt.$$

This completes the proof of Part (i) of the theorem.

Part (ii). It follows from (8) that if $x \in W_p$, $l = l_x$ and $M_n = M_n(\alpha, p)$, then

$$|f(x)| = \left| \int_{1}^{\infty} \alpha(t) \ x(t) \ dt + al \ \right| \le 2^{1/p} \|x\| \sum_{n=0}^{\infty} M_n + |al|$$
 (9)

Further, by Minkowski's inequality,

$$(1 - 1/T)^{1/p} |l| \leq \left(\frac{1}{T} \int_{1}^{T} |x(t) - l|^{p} dt\right)^{1/p} + \left(\frac{1}{T} \int_{1}^{T} |x(t)|^{p} dt\right)^{1/p}$$

and the first term on the right-hand side is o(1). Hence

$$|l| \leq ||x||,$$

and consequently, by (9),

$$|f(x)| \le ||x|| (|a| + 2^{1/p} \sum_{n=0}^{\infty} M_n)$$

for every $x \in W_n$.

LINEAR FUNCTIONALS CONNECTED WITH STRONG CESARO SUMMABILITY 633

The additive and homogeneous functional f defined by (3) is therefore also continuous on W_n and

$$||f|| \le |a| + 2^{1/p} \sum_{n=0}^{\infty} M_n.$$

Finally, by (8), the integral in (3) is absolutely convergent, and the proof of Theorem 2 is thus complete.

3. Proof of Theorem 1

Part (i). Given any real sequence $x = \{x_n\}$ define a function x^* by

$$x^*(t) = x_n$$
 for $n < t \le n+1, n=1, 2, ...$

It is easily verified that this defines a one-one correspondence between w_n and a linear subspace W_p * of W_p such that

$$l_{x^*} = l_x$$
 and $||x^*|| \le ||x|| \le 2^{1/p} ||x^*||$.

Hence, given a linear functional f on w_p , the functional f^* defined by

$$f *(x*) = f(x)$$

is linear on W_p *. Consequently, by the Hahn-Banach theorem [1; pp. 27–28] and Theorem 2, there is a real number a and a real valued function α *, integrable over $(1, \infty)$, such that

$$\sum_{n=0}^{\infty} M_n(\alpha^*, p) < \infty$$

and, for every $x \in w_p$,

$$\begin{split} f(x) &= f *(x*) = a l_{x*} + \int_{1}^{\infty} \alpha *(t) \ x *(t) \ dt \\ &= a l_{x} + \sum_{n=1}^{\infty} \alpha_{n} x_{n}, \end{split}$$

where

$$\alpha_n = \int_n^{n+1} \alpha^*(t) \ dt.$$

Further, for $\alpha = \{\alpha_n\}$,

$$\textstyle\sum\limits_{n=0}^{\infty}m_{n}(\mathbf{x},\,p)\leqslant \textstyle\sum\limits_{n=0}^{\infty}\boldsymbol{M}_{n}(\mathbf{x}^{\divideontimes},\,p)\,;$$

and this completes the proof of Part (i).

Part (ii). If $x = \{x_n\} \in w_p$, $l = l_x$ and $m_n = m_n(\alpha, p)$, then, by Hölder's and Minkowski's inequalities, as in the proof of Part (ii) of Theorem 2,

634 LINEAR FUNCTIONALS CONNECTED WITH STRONG CESÀRO SUMMABILITY

$$\begin{split} f\left(x\right) &= al + \sum_{n=1}^{\infty} \alpha_{n} \, x_{n} \leqslant |\, al\,| + \sum_{n=1}^{\infty} |\, \alpha_{n} \, x_{n}\,| \\ &\leqslant |\, al\,| + 2^{1/p} \, \|\, x\,\| \sum_{n=0}^{\infty} m_{n} \leqslant \|\, x\,\| \, \bigg(|\, \alpha\,| + 2^{1/p} \sum_{n=0}^{\infty} m_{n}\bigg). \end{split}$$

The functional f defined by (1) is therefore linear on W_p ,

$$||f|| \le |a| + 2^{1/p} \sum_{n=0}^{\infty} m_n$$

and the series in (1) is absolutely convergent. This completes the proof of Theorem 1.

Reference

1. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).

University of Western Ontario, London, Ontario, Canada.

- 0