ON ABSOLUTE RIESZ SUMMABILITY FACTORS
D. BorwEIN and B. .. R. SHAWYER

1. Suppose throughout that a, & are positive numbers, and that p is
the integer such that k—1<p <<k. Suppose that ¢(w), s (w) are functions
with absolutely continuous p-th derivatives in every interval [a, W],
and that ¢(w) is positive and unboundedly increasing. Let A= {A,} be

an unboundedly increasing sequence with A, > 0.
o0

Given a series, Y a,, and a number, m >0, we write
n=1

2z (w=A)ma, if w>A,
A, () = {)‘"‘“’

0 otherwise,
and A (w)= 4,(w).
If w™A,,(w) tends to a finite limit as w tends to infinity, the series,

E’] Uy, I8 said to be summable (R, A, m); and it is said to be absolutely
n=1

summable (R, A, m), or summable | R, X, m|, if w™ A, (w) is of bounded
variation in the range w = 0.
We shall use the notation, ,D/f(f), to denote

(_1)"0"H g \p+1l [w B
rorg (3) |, w—trtrwas,

provided this expression is defined.
The object of this note is to obtain manageable conditions sufficient
to ensure, when k is not an integer, the truth of the proposition

P E‘, a,¥(A,) is summable | R, $(N), k| whenever § @, s summable
n=1 n=1

| R, A, k|
The following theorems are known.
For all :
T,. If d(w)=e¥ and §(w)=w"*, then P.
For integral values of k:

Ty If (i) ¢(w) is a logarithmico-exponential function,t

< gtw)
i) o) = (S0,

then P, and
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 For definitions and properties of logarithmico-exponential functions, see [6].
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Ty, 1If there is a function, y(w), defined and positive for w > a, such that
(i) y(w) = O(w) for w>a,

(i) wn e (w) = O({Z%U—)}k_n) Jor n=0,1,. ..,k and w>=a

. (iii) {y@)}r¢™(w) = Ofpw)} for n=1,2, ..., k and w>a,

For non-integral values of k:
T,. 1Ifthereis a function, y(w), defined and positive for w > a, such that
(i) y(w) = O(w) for w>a,

(i) w™ P (w) = O({%}@}k—n) Jor n=0,1,...,p and w>=a,

(i) y(w) ' (w) = O{p(w)} for w = a or {y(w)}r$m

i > m(w) = O (
jl;?;ﬂi,— L2, ..,p and w>=a, according as 0< k< 1w£
(iv) for t >a,

(-4

is of uniformly bounded variation with respect to w in the
range [t, o),
then P.

T, is due to Tatchell [7], T, to Guha [4], and T, and T, to Dikshit [2, 3]
Suppose, from now on, that % is not an integer. Qur main theorem is:

T4 If thereis a function, y(w), defined and positive for w = a, such that
(i) y(w)=0(w) for w>a

a) f(w) = O(P(Tw}k) Jor w>=a,

(b) wn ™ (w) = ({Z—u}pﬂ_ﬂ) forn=1,2, .., p}1

and w>a, v
(iii) (a) i;;gvgﬂi(’i,(w): O{pw)} for n=1,2, ..., p+1

b) for n=2,3, ...,p+1,
oMo

15 of bounded variation in the range w>=a,7t
H

t This condition is void if k<1,
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(iv) {w<;f> (w)] Ji(w) is of bounded varialion in the range w = a,

$(w)

i / w A 2
wg” (w) nd M are non-negotive monotome non-

™) gy )

decreasing for w=a,

then P.

We shall, in fact, deduce T4 from the more general theorem:

Ty If condition (v) of T4 1s replaced by
v) for 0<v<1, t =6 and e> 0,

2(1—v) ¢ (t--ow) \PrF o [Glitoa)\EP
{¢(t+w)_¢(t+vw), ane { ${+2) }

are of uniformly bounded variation with respect to x in the
range ¢, ), the other conditions of T 4 remaining unchanged,

then P.
Evidently, T, includes T, with & non-integral.

of Ty, with y(w)-—g(—), is that, for non-integral k, P holds with

A simple consequence

o= ()
A

provided ¢(w) ) is a logarithmico- -exponential function sa,tlsfymg < qS

Also, T 4 implies that P is true when ¢(w) = w and (w) is a 1ogar1thmlco-
exponential function tending to a non-zero finite limit. Using now a
result due to Chandrasekharan [1], we can easily deduce that T, is also
true when k is non-integral. 'We have not investigated the exact relation
between our theorems and Ty, bub each condition of T 4 is simple to verify
in particular cases, whereas the unwieldy condition (iv) of T, is not.

2. The following lemmas are required.
Leya 1. The n-th derivative of { f(a)ym is a swm of constant multiples
of a finite number of terms like
ki3
ey L oy

where oy, By, +-»s %y ATE non-negative infegers such that

'Z_,oc =p < Z vet, = e
Vfl =1

This is a particular case of a theorem due to Faa di Bruno. See

[8; I, pp. 89-90].




458 D. BorwEIN and B. L. R. SHAWYER

Levma 2. For w>t2>=0

Di{1- 201y

_ (=1)pn J‘w e i p+1 [ _M k
=rori=n ), () (1= ) v)ae
This is similar to Lemma 5 (first part of proof) in [5].
Levma 3. For w>0

[ =200 swaac

- [ £ ) 4

This is similar to Lemma 6 in [5].

LeEmMmaA 4.7
i) If Gy(x) =fmf1(x, u)gy(u)du and fi(x, x) =0 for x >a, then
[J1ac@ <5 [7dpw vl [l

3 i a
(ii) If Gy(x) = L}w Jolz, u) gy(w)du and f, (x, ?)_ 0 for x =a, then

JJ1e@i< B [7 a0 [ nw]a
a 0<u<1 alu

(i) If Gy(x) = fﬂ e o, ten

[1ass@1< B [“la ol [lasolan
0<u<1

This is essentially the same as Lemma 1 in [7].
LevMa 5. For p=0,1,...,» and t =>a
®, (0, 1) = {$(0)}* () — SO+ (O}
is of uniformly bounded variation with respect to w in the range [f, o).

The result is trivial if u=0. For u >0, ®,(w, t) is non-negative
monotonic non-decreasing until ud(f) = ké(w), and then non-negative
monotonic non-increasing. Hence, the total variation of @, (w,1) is at
most 2(k—p)*~#k~*u# which is constant, and independent of .

It is to bo assumed that all integrals in this Lemma are defined in Lehesgue and
Riemann-Stieltjes sense s as appropriate, and that Gi(a) = Gy(a) = 0.
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LEmmA 6.
ff " .
) If uj is mon-negative monotonic non-decreasing for u = a, then

as(l—v)q’: (t—l—vm))
SR — P+ )
fh(e mxnge (0, ) for 0 <v <1 and t =a.

is a uniformly bounded mon-increasing funclion of z in

; ) - i =a, then
i) If il zs non-negative monolonic non-decreasing for u =a,

$(u)

gt tom) . is @ uniformly bounded non-increasing function of = in the range
B(t+a)
[0, 00) for 0 <v <1 and t =a.

Proof. (i) Denoting qb 5; i ) qs((tt—j_?g) by F,(x), we have, for z >0,

t>=a and 0 <v <1,

F(x) _vg" (t4ox)
Fi(z) ~ ¢ (t+om)

@' (t+2)—vd' (f-+-vx)

e $(Fa)—p(i+oa)

od((4om) | Fale)—Fyloa)
= Fitw) T zptta)—ptre)

where
Fy(a) = $(t+o)—a (t-+2),
and so
Fl(x)= —axd" (t-1x).
Hence
B/ (x) ’Uqf)” (t+vx) sz(ex) h <0 <1
Fiw) — F0Tom) | of ((+0a) ks

v’ (f4vx) 04" (E1-0)
= Ftw) | SR

(t+ovx)d” (t+vx) vz (t+0x) " (t+0x) Ox
B x{ :;Sw(il—vw) tor ¢’ (t+0x) H-B:c]

<0,

since M and —2— are non- negative monotonic non- -decreasing func-

¢’ (u) tt+w .
tions of u for w>a. Since F;(x) is non-negative, and ilj;i Fix)=
the result follows.

(ii) Denoting fb +m¢) by F4(x), we have, for x>0, t=a and

OW—n <1,
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Fy'(x) v (ttox) ¢'(I+a)

Fyx) — $lt+vz)  p(t+a)

__x B

mi{(t+vx)¢’(t+vx) vz (t+x)d' (t+2) =
P (t+vx) t+vx ¢(t-+x) t-{—m}

<0,

!
ug’ () and % a ; . :
are non-negative monotonic non-decreasing func- 1

b (u) t4u
tions of w for w>a. Since F,(z) is non-negative and F3(0)=1, the
result follows.

since

3. Proof of Tg. We assume, without loss of generality, that 4 (w) =0
for 0 <w < a and that w*A4,(w) is of bounded variation in the range
w>=a, so that

% 4
and note that it is sufficient to prove that

_p)\*
40, <) { b (w) } H(A,) @ps

which, for w >a, is equal to
[ £ vwaao, @)

is of bounded variation in the range w = a.
In view of Lemma 3, we can express (2) in the form
1 w b(t) " d 1 1
T DE[{1— 1% = —
v S, PH([1- i) wo) 0= Bt

where Ilifjwptk({l_ﬂ}k¢(t)) tk_1Ak(t)dﬁ,

() 1
" e o g g
By partial integration,
I= awa(w, t)%{%fi)} dt

where
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In order to show that I, is of bounded variation with respect to w in the
range [a, ©), it is sufficient, in view of (1) and Lemma 4(i), to prove that

fwldwa(w, t)|=0(1) for t>a.
I3

Now, by Lemma 2, for w>=t>a,
(—1PH T (p+1—k) gy (w, t)

e oo 5 e
[ e
= J;w uP (a%)pﬂ ( { 1— %}k ¢(u)) du J:j (1—v)P—Fok-1dy

[* amoproran [T (2 (1 ) ) a

tlw

1

= | (1—w)P*oklg, (w, %) dv

Hw
where
w + %
o= [l (-4 o)
Since .
[} a—sprursao T FLRTE,

in order to prove that I, is of bounded variation with respect to w in the
range [a, ), it is sufficient, in view of Lemma 4 (i), to prove that

J-www%(u’, y)|=0(1) for-y = a.

¥

Integration by parts yields, for w>y >a

k P r k
a9 = bop )1 S+ £y (2) ([1- 500 v)
where by, by, ..., b, are constants.

By T, (i) and (ii), ¢(y)=0(1) for y >a, and hence the term with
coefficient, b, is of uniformly bounded variation with respect to w in the
range [y, o) for y =a. Also, by Lemma 1 and Leibnitz’s theorem on
the differentiation of a product, the other terms can be expressed as sums
of constant multiples of terms like

gs(w, ) = D ,(w, ) y" P () {$(y)} vfi {6 (y)}
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where oy, y, ..., %, are non-negative integers such that
a n
0< Bo=p< X v, =n<r<pt
= y=1

and
D, (w, y) = {$(w)} " {$(w)— )} {p)}*

Now, in view of Lemma 5, ¢;(w, %) is of uniformly bounded variation
with respect to w in the range [y, o) for y > a, since, if we take m = p--1
when r >>n and m = k when r = n, we have, by T, (i), (ii) and (iii),

7 - —# 1 v Gy — T{,},(y)}m—r+n —ﬂi{(ﬁ(y)}ﬂ
yrgem @)+ T o —ofy P g+ T)

G

= 0(1),
m—r being positive.

Hence 1, is of bounded variation with respect to w in the range [a, c0).

Consider now I,. In view of (1) and Lemmas 3 and 4 (i), in order
to prove that [, is of bounded variation with respect to w in the range
[a, o), it is sufficient to prove that

is of uniformly bounded variation with respect to w in the range [t, c0)
for t >=a.

Now, in view of Lemma 1 and Leibnitz’s theorem on the differentiation
of a product, it is sufficient to prove that each of the following integrals is
of uniformly bounded variation with respect to w in the range [¢, )
for t >a:

=55 [ —tpr g ) —ptaan

I [* a—tprponmw g —syr 1T gooyode,

ho={zts]" [ =t s 00 —gp T o dn

0 0
+ Products and sums, II , X , are taken to have values 1, 0, respectively.
r=1 »¢=1
1 Here and subsequently, integrals of this form, are defined to have value zero
when w = &.
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where oy, ty, ..., %, By, Bas ---» Bps1 8L6 Non-negative integers such that

»

r
1§21mp:|u’g2vc{v:?\<\lp’
p=

y=1

and p+1 p+1
1< X f=0< 3 B=p+1,

v= y=1

Now, for t >a, by T, (i) and (ii)
f ® P (u— o 01D (1) du = 0{ f ® e (u— )Pt g1 du} :
[ t

and the latter integral is finite and independent of £. Hence, in view of
Lemma 4 (i), it is clear that I,, is of uniformly bounded variation with
respect to w in the range [t, o) for { >a.

Further, for w > >a, we can write

122: fw Q)#(w, t) tk(u_t)ﬂ-k 4,(p+1-r){u) {gb(u)}““ ﬁ {qg(u)(u)}a,, du.
/s p=1
By T, (ii) and (iii), for £ >a,

f " e (u— )R 0 ) ()} T {0 ()} du
i r=1

=0 Uw th(u—typ—Ey—P-1 du} ;
t

and the latter integral is finite and independent of . Hence, in view of
Lemmas 4 (i) and 5, it is clear that I, is of uniformly bounded variation
with respect to w in the range [t, o) for { > a.

Finally, for w>>t2>a, we can write

To={gts)" | e trs s o) —graopp-»2

ptl
x {$(w)—p(u)}r 1= 11 {$O(u)} du.
r=1
Since p-+1—o is a positive integer (or zero), we can expand
{b(w)—d(w)}?+1-7 by the binomial theorem, giving, for w >t >a,

p+l—o

In="3 o F{pw)r—ot

x [ - )—gupr i T @00 du

where ¢, ¢y, ..., €p;1-, are constants.
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To the typical integral of the above sum, apply the transformation
u=t+tve;, w=1t+zx

to obtain a constant multiple of g,(x, ), where, for t >a, ¢,(0,t)=0
and for x >0 and ¢t >a

qa(®, 1) = P {(wp)}pti-o—tr f: {sﬁ(wrc;)(?f g)+vx)]’“—?‘1 (o)

X (t+vz) pﬁl {O (E4-v)} B vP—R(1—p)k—2-1y,
v=1

It is sufficient to prove that g¢,(z, ¢) is of uniformly bounded variation
with respect to x in the range [0, «0) for { > a.
Now, for x >0 and ¢t >a, we can write

1 PERY
qa(, 1) :fo @)P—I‘(va)k'l’l{t_{_vx} H,(z, ¢, v)

X {Hy(z, t, v)}e-2—14o+r F (¢4 vzr) Iﬁl {Q, (t-+vx)}v dw
p=1

where ,
__[p(4x)— P (tHva)) 22
Hy(z, t, v) = {w{l——ﬁ) &' (tox) } ;
_ |y ())*
0 = (")
and
_ @) 1 (y)
ww={F0 "5,
N 1
ow J‘ ’Up—k(l-—-v)kfﬂﬁld’v: T(p+1_k) I‘(]Cip),

and each of the remaining terms in the integrand of g,(, ¢) is of uniformly
bounded variation with respect to x in the range [e, o) for € >0, 0 <p <1
and t >a;

{t—}-—tm—:}k being trivially so;

Hy(@,t,v), by Tg (v);

{Hy(z, t, v)}ep-ltotr, by Tp (v) since o7 >1;
Hy(t4-vx), by Ty (iv); and

@, (t+vx) by T, (iii)(b).

t We use the result, that if o > 1 and if f(x) is of bounded variation in the range
[e, ® ), then so is {f(x)}*
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Hence, in view of Lemma 4 (iii), ¢,(z, ¢) is of uniformly bounded variation
with respect to # in the range [¢, ) for € >0 and t =a. Further, for
t >a, in view of T, (ii) and (iii)

3

x>0+

lim g,(x, 8) = D(p+1—8) T(k—p) Hy(0) TT {Q, 1)}
y=1
= 0(1).

Consequently, g,(x, t) is of uniformly bounded variation with respect to x
in the range [0, o) for { >>a, and so, I, is of uniformly bounded variation
with respect to w in the range [¢, o) for ¢ >a.

Hence I, is of bounded variation with respect to w in the range [a, o),
and it follows that (2) is of bounded variation for w > a, this completing
the proof of Tp.

4. Proof of T4. Inview of Lemma 6, T, follows immediately from T B
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