ON MULTIPLICATION OF CESARO SUMMABLE SERIES
D. BorwEIN and Y. MATSUOKA
1. Introduction

Throughout this paper f}cn denotes the Cauchy product of the series
0

s} (=0} 2
Ya, and X b,, i.e.
0 0

M=

Cp= 2, D

n—r?

r=0

and (C, «), [C, ], | C, «| denote respectively ordinary, strong and absolute
Cesaro summability metheds. The method [C, ], previously defined only
for « > 0, is defined in a natural way for « < 0 in §2.

It is known (see [1] and the references there given) that if %an is
summable | C, —u| to A and ;ﬁbn s summable (C, —u) to B, where =0,
then %cn s summable (C', —u) to AB.

As a companion to this result we prove:

TororEM 1. If >0 and %%, %bn are summable [C, —u] to A, B
respectively, then %cn is summable (C, —p) to AB.

The case u = 0 of this theorem has been established by Boyd [4]. We
also prove the following two theorems.

THEOREM 2. There are series DE:] Qs i:}bﬂ, respectively summable (C', —1)
and absolutely convergent, for which %cn s not summable [C, G].

THEOREM 3. Given o> —1, there are series i:]wn, i‘;bn, respectively
summable (C, —1) and (C, a), for which %cn is not summable [C, a-1].

The cases = —1 and «a=0 of Theorem 3 have been proved by
Boyd [4]. Tmmediate consequences of Theorems 2 and 3 respectively
(see inclusion IV in §2) are:

o =]
CoroLLARY 1. There are series X a,, 3 b,, respectively summable [C, 0]
0 0

and absolutely convergent, for which Y c, is not summable [C, 0].
0

Received 27 January, 1962; revised 14 March, 1962,
[JournaL Lowpox Marw. Soc. 38 (1963), 393-400]



394 D. BorwEIN and Y. MATSUOKA

CorOLLARY 2. Gliven 12>=0, there are series §a-n, ﬁbn, respectively
0 0

summable [C, 0] and [C, 1], for which 3¢, is not summable [C, ).
0

We state next three known propositions, the first due to Boyd [4] and
the others to Winn [7].

.. (x) If ?:S a, is summable [O, k] to A, where k> 0, and ?bﬂ is absolutely
onvergent with sum B, then % ¢, ts summable [C, k] to AB.

S a,, is summable [C, k] to A and %’bﬂ is summable (C, 1) to B,

W0, then }25% is summable (C,k+1) fo AB.

summable [C, k] to A and §] b,, ts summable [C,1] to B,
0

0

2 ed the falsity of (8) with £=1=0 in

)with & = 0,l=0or 1 inplace of & > 0,1> 0.
ir%“or. every l, =0, (y) is false when k>0, [ > 0 is
”'0' .

2. Notation, definitions and preliminary results.
T

=20 m=01,..)
r=0

Given matrices Q — (¢, ), P=( .
[ : o1s 2 103 = pn,r) (n: TZO: 1, "’) with & >O’
the strong summability method [P, @] is defined (see [3]) as followg:f /Let

0= Q)= 3 qn, 5,.
Then ;‘_‘ i =
.4, 15 summable [P, @] to s, and we write 8, —>s[P, Q], if
rz-:opn, r’ Gp—S§ l

is defined for each n and tends to 0 as 7> oo,
We use the notation:

_(nta B
en‘"—-..( . ), A“3n=r§05;5;18, (n=0,1, ...; any real «).

Denote by C, , the matrix of the li i
i A e linear transformation from {s,} t(? {o.}

n
1
= c—1 —a
¥ Enu+ﬁr§] =n E,.ﬂ o En'x"'ﬂ A (enﬂ Sn)

i1, a4 > —1);
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it is known ([2], Theorem 8) that C, , is the Hausdorff matrix generated
by the sequence {e,f/,**}.

Define C, to be the matrix C, o when « > —1,and C,,_, when o << —1.
Then, for any real «, the statement

%uﬂ is summable (C, «) to 4
0

can be interpreted (see [1], 443) as
op = Cyhls) > 4.

We now define, for every real o, the strong Cesaro method [C, «] to be
[Cy, C,_4]. The definition is standard for &> 0; for & << 0, the method
[C, «] does not appear to have been defined explicitly before. The follow-
ing proposition, which is a special case of a known result ([3], III) with
X = C_, ,), shows that our definition of [C, 0] is equivalent to one framed
by Hyslop [6].

I. The series %wn is summable [C, 0] to A if and only if it is convergent
0

with sum A and

L

3 r|a,| =o(n).

=0

Giiven summability methods X, ¥ we say that X is included in ¥ and
write X Y if every series summable X is also summable Y to the same
sum:; X and Y are said to be equivalent and we write X~Y if each is

included in the other.
We list next some inclusions, which hold for every real «, together with

references to results of which they are immediate consequences.

IO. [0, «]x[0y, Coy gl (B>—1 a+B>0)
([3], IT; and [2], Theorem 9.)

III. [C, «]<[C, «+58] (5> 0).
([3], II; and [2], Theorem 6.)

IV. (C, a—1)<[C, a]=(C, o).
([3], Theorem 3; and [2], Theorem 7.)

i e (=l 4
([3], Theorem 12; and [1], |III|.)
That ITT, IV and V hold for « = 0 was known before (see [4], [6], [7]).

~ Inclusion V is listed for interest only and is not used in the rest of this
paper.
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3. Proofs of the theorems.

In order to prove Theorem 1 we re
one proved by Winn ([7], 483-484),

From the hypothesis s,—+0 [C, —u] we deduce, by II, that
quire a lemma which is similar to

$ 19| _ oy

3 A and hence, by the Lemma, that
Levma, If W, = W, =o0(n) then, for a <1, ¥ & w, = 0(e, %),
=0

ki
= 1 E ol =o(0).
. . " r=0
Proof. By partial summation we have Next, since £, >0 [C, —u] we have, by IIL, that £, = 6(1) and it follows
ext, si n o= ? :

Wi 7
2 o, = B W, (6 e
r=0 =0

H ot =0 3 oW, /(r+1)+o0(e, 1),

n Yn:% % bpr ¥ = 0(1).
Since W,/(r4-1)—0 and > e n o r=0
0

= €,'7% the required result can now be
obtained by an application of Toeplitz’s theorem.

Proof of Theorem 1.

Similarly Z, =o(1); and the proof of Case (i) is complete.

Case (ii). Suppose now that there are no restrictions on 4, B.

Lot @, — ay—A, b, —b,—B; @, —ay, b,' =b, (r>0) and let
Case (i). Suppose 4 — B = 0.

W
cn’ = E CL’.I b’;&—?"
r=0
Let g =m+-o«, where m is a non-negative integer and 0 <o < 1; and
let "
h=Fa, fi=
r=0 T

Since %an, %bn are summable [C, —pu] to A, B respectively, it is
0 0

=

b,.

0 .

I

readily seen that ﬁa,; and E b, are both summable [C, —pu] to 0, from
It has been shown ( > >

which it follows, by Case (i), that

[1], 447) that o necessary and sufficient condition for
2i¢, to be summable (C, —u) to 0 is that
0

E‘,cn’ is summable (C, —pu) to 0.
KXot Y,+2Z, = o(1), >

But
where

N N N
m 1 n gcn:ch’+Bzan+‘A%}bﬂ%ABa
X = ¥ T 2 ATk &MH-pg ) Arta( eﬂ cpbnen ¢ . °

: SRS i aiel §a § b, are summable (C, —u) to 4, B respectively. Hence 20"6%
whenm}landXﬂ=0whenm=0, and c e "

is summable (C, —p) to AB. This completes the proof.

n e . - - . t e
i I_QE;O g AFH(GT#H o Proof of Theorem 2. For convenience we divide the proof into thre
parts.

N 7
= =0,1,..),and
Part (i). Letw,>0,9,>=0, Un=20ur,Vn-—%v,(n 0,1,..),an

n
Zﬂ = Siiea Z Spp B+ (E,-'“ g t,).
€ r=0

By hypothesis, s, —0 [0, —pl, t,-0 [C,

let a,= (—1)*u,, b,=(—1)"v,. Then
inclugion in IV (§2),

—u], 80 that by the second )
6= 3 a,b, = (—1) 3 4,5,
=0
Sn_+0 (O: —,(L), tn+0 (0: ‘,I'.L), and hence ([4], 30)
and a known consequence ([1], 447-448) is that

2n

2m v 2n

22ﬂ V]C ‘= vy Uy Vyy = b TurVEn—r_’_ > U, Uzn——r
»=0 ¥ r=0 =0

v=0 =(
'Xn = 0(1 ) : = d ( 1)
ki = Nan by o> U‘"’F& 7V,
=0 =
Yn =Bt (eyiti-eg,) = Oy, prae (4).




398 D. BorwEIN and Y. MATSUORA

Part (ii). We show now that given any unbounded sequence of
positive numbers {I/,}, there is a sequence {v,} such that

v, =0, §] v, <o and U, §: v, 7= o(n). (2)
0 0
Let {8,} be a sequence not converging to 0 such that
B, =0 and Ergﬂ<oo;
0 n

a suitable sequence can be constructed by first defining an increasing
sequence of positive integers {n,} for which

Unp > V2,

and then taking B, to be 1 whenever n = x, and 0 otherwise.

Let
—1
=0, mn=%-?®—n—§”—_t > 1).
n n—
Then n
U, St —=np,
0
and

§|o«n|<oo-

Setting », =|a,|, we have
T
Un2Zrer 2 7B

and so the sequence {v,} satisfies (2) as required.

Part (iii). To prove our theorem take @, = (—1)"u, where u, >0,
nu, =o0(1) and %} (—1)*w, is conditionally convergent; e.g.
T 1/((n+2) log (n+2)). Then UTL:%% is positive and tends to
infinity, and %an is summable (C, —1). Let b, = (—1)"v, where {v,}
is a sequence satisfying (2); then %bn is absolutely convergent.
In virtue of I, the Cauchy product i:‘,cn of the above series %an, %bn is not

summable [C, 0], since, by (1) and (2),

22n] v|c,| #o(n).

r=0

- -

P N

FyoE

=
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Proof of Theorem 3. Since the case «— —1 has been proved by
Boyd [4] we may suppose that «> —1. Let

fley=g
loglog
then, as z— o0,
s Ao L)
/(@) ~ log log x (H_O(l)) (3)

and so there is a positive integer p such that

fx+1) > f(x) > 0 for z > p.
Let

and let

Then, for n > p,

Ban===—o=f"n—148 <0<,

and so, by (3),

Now set

Then 3a, is summable (€, —1); and, since C,(B,)=8,-0, 2b, is
summable (C, «) to 0. Let :

n n
Cp= 3 Ay bn~r: Yn=2Cp Op= Oac ('}’n)
=0 =0

Then

T

Vo= 2 L B,.: % wn——rAm(Erqﬁr)’

= r=0

" n
€ 0 = 3
r=

oa’n—r Eraﬁr =(=1) X la;w.—fl (Srﬁsr—l) 5
r=0

and so, as m—>c0,

motl m 1

loglogm , =, n logn e

2m A 2m m
nEOEn laﬂ | = n§0 | a’nl 82m—'m. = EO, Ay, l 82m—n =
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It follows that -
3 w2 be, | SolmH)
=0

and hence, by our Lemma, that

% | oy, | 5% o(m).

n=>0

Consequently gjcn is not summable [C, a-F1] to 0. However, by a
o

standard result ([5], Theorem 164), ficn is summable (€, «+1) to 0 and
so, by the second inelusion in IV (%2), the series cannot be summable
[C, «a+1] to any number other than 0. Hence E‘,cn is not summable
[C, «+1]. ¢

Remark. Tt is known ([5], Theorem 166) that, given a >> —1, there are
series %an, nz:]bn, respectively summable (C, —1) and (C, o), for which E:icn

28 not summable (O, o).

Our Theorem 3 is stronger than this result, since (C, «) is included in,
but is not equivalent to, [C, a-1].
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